Cargando…
Accurate Silent Synapse Estimation from Simulator-Corrected Electrophysiological Data Using the SilentMLE Python Package
The proportion of silent (AMPAR-lacking) synapses is thought to be related to the plasticity potential of neural networks. We created a maximum-likelihood estimator of silent synapse fraction based on simulations of the underlying experimental methodology. Here, we provide a set of guidelines for ru...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757407/ https://www.ncbi.nlm.nih.gov/pubmed/33377070 http://dx.doi.org/10.1016/j.xpro.2020.100176 |
_version_ | 1783626745555976192 |
---|---|
author | Lynn, Michael Naud, Richard Béïque, Jean-Claude |
author_facet | Lynn, Michael Naud, Richard Béïque, Jean-Claude |
author_sort | Lynn, Michael |
collection | PubMed |
description | The proportion of silent (AMPAR-lacking) synapses is thought to be related to the plasticity potential of neural networks. We created a maximum-likelihood estimator of silent synapse fraction based on simulations of the underlying experimental methodology. Here, we provide a set of guidelines for running a Python package on compatible experimental synaptic data. Compared with traditional failure-rate approaches, this synthetic likelihood estimator improves the validity and accuracy of the estimates of the silent synapse fraction. For complete details on the use and execution of this protocol, please refer to Lynn et al. (2020). |
format | Online Article Text |
id | pubmed-7757407 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-77574072020-12-28 Accurate Silent Synapse Estimation from Simulator-Corrected Electrophysiological Data Using the SilentMLE Python Package Lynn, Michael Naud, Richard Béïque, Jean-Claude STAR Protoc Protocol The proportion of silent (AMPAR-lacking) synapses is thought to be related to the plasticity potential of neural networks. We created a maximum-likelihood estimator of silent synapse fraction based on simulations of the underlying experimental methodology. Here, we provide a set of guidelines for running a Python package on compatible experimental synaptic data. Compared with traditional failure-rate approaches, this synthetic likelihood estimator improves the validity and accuracy of the estimates of the silent synapse fraction. For complete details on the use and execution of this protocol, please refer to Lynn et al. (2020). Elsevier 2020-11-24 /pmc/articles/PMC7757407/ /pubmed/33377070 http://dx.doi.org/10.1016/j.xpro.2020.100176 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Protocol Lynn, Michael Naud, Richard Béïque, Jean-Claude Accurate Silent Synapse Estimation from Simulator-Corrected Electrophysiological Data Using the SilentMLE Python Package |
title | Accurate Silent Synapse Estimation from Simulator-Corrected Electrophysiological Data Using the SilentMLE Python Package |
title_full | Accurate Silent Synapse Estimation from Simulator-Corrected Electrophysiological Data Using the SilentMLE Python Package |
title_fullStr | Accurate Silent Synapse Estimation from Simulator-Corrected Electrophysiological Data Using the SilentMLE Python Package |
title_full_unstemmed | Accurate Silent Synapse Estimation from Simulator-Corrected Electrophysiological Data Using the SilentMLE Python Package |
title_short | Accurate Silent Synapse Estimation from Simulator-Corrected Electrophysiological Data Using the SilentMLE Python Package |
title_sort | accurate silent synapse estimation from simulator-corrected electrophysiological data using the silentmle python package |
topic | Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757407/ https://www.ncbi.nlm.nih.gov/pubmed/33377070 http://dx.doi.org/10.1016/j.xpro.2020.100176 |
work_keys_str_mv | AT lynnmichael accuratesilentsynapseestimationfromsimulatorcorrectedelectrophysiologicaldatausingthesilentmlepythonpackage AT naudrichard accuratesilentsynapseestimationfromsimulatorcorrectedelectrophysiologicaldatausingthesilentmlepythonpackage AT beiquejeanclaude accuratesilentsynapseestimationfromsimulatorcorrectedelectrophysiologicaldatausingthesilentmlepythonpackage |