Cargando…
Accurate Silent Synapse Estimation from Simulator-Corrected Electrophysiological Data Using the SilentMLE Python Package
The proportion of silent (AMPAR-lacking) synapses is thought to be related to the plasticity potential of neural networks. We created a maximum-likelihood estimator of silent synapse fraction based on simulations of the underlying experimental methodology. Here, we provide a set of guidelines for ru...
Autores principales: | Lynn, Michael, Naud, Richard, Béïque, Jean-Claude |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757407/ https://www.ncbi.nlm.nih.gov/pubmed/33377070 http://dx.doi.org/10.1016/j.xpro.2020.100176 |
Ejemplares similares
-
Presynaptically Silent Synapses Studied with Light Microscopy
por: Moulder, Krista L., et al.
Publicado: (2010) -
Silent Synapse-Based Circuitry Remodeling in Drug Addiction
por: Dong, Yan
Publicado: (2015) -
Silent Synapse-Based Mechanisms of Critical Period Plasticity
por: Xu, Weifeng, et al.
Publicado: (2020) -
Silent Synapses Dictate Cocaine Memory Destabilization and Reconsolidation
por: Wright, William J., et al.
Publicado: (2019) -
Silent synapses in pain-related anterior cingulate cortex
por: Zhuo, Min
Publicado: (2023)