Cargando…

Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning

PURPOSE: To assess the use of deep learning for high-performance image classification of color-coded corneal maps obtained using a Scheimpflug camera. METHODS: We used a domain-specific convolutional neural network (CNN) to implement deep learning. CNN performance was assessed using standard metrics...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdelmotaal, Hazem, Mostafa, Magdi M., Mostafa, Ali N. R., Mohamed, Abdelsalam A., Abdelazeem, Khaled
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757611/
https://www.ncbi.nlm.nih.gov/pubmed/33384884
http://dx.doi.org/10.1167/tvst.9.13.30
_version_ 1783626770895863808
author Abdelmotaal, Hazem
Mostafa, Magdi M.
Mostafa, Ali N. R.
Mohamed, Abdelsalam A.
Abdelazeem, Khaled
author_facet Abdelmotaal, Hazem
Mostafa, Magdi M.
Mostafa, Ali N. R.
Mohamed, Abdelsalam A.
Abdelazeem, Khaled
author_sort Abdelmotaal, Hazem
collection PubMed
description PURPOSE: To assess the use of deep learning for high-performance image classification of color-coded corneal maps obtained using a Scheimpflug camera. METHODS: We used a domain-specific convolutional neural network (CNN) to implement deep learning. CNN performance was assessed using standard metrics and detailed error analyses, including network activation maps. RESULTS: The CNN classified four map-selectable display images with average accuracies of 0.983 and 0.958 for the training and test sets, respectively. Network activation maps revealed that the model was heavily influenced by clinically relevant spatial regions. CONCLUSIONS: Deep learning using color-coded Scheimpflug images achieved high diagnostic performance with regard to discriminating keratoconus, subclinical keratoconus, and normal corneal images at levels that may be useful in clinical practice when screening refractive surgery candidates. TRANSLATIONAL RELEVANCE: Deep learning can assist human graders in keratoconus detection in Scheimpflug camera color-coded corneal tomography maps.
format Online
Article
Text
id pubmed-7757611
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-77576112020-12-30 Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning Abdelmotaal, Hazem Mostafa, Magdi M. Mostafa, Ali N. R. Mohamed, Abdelsalam A. Abdelazeem, Khaled Transl Vis Sci Technol Article PURPOSE: To assess the use of deep learning for high-performance image classification of color-coded corneal maps obtained using a Scheimpflug camera. METHODS: We used a domain-specific convolutional neural network (CNN) to implement deep learning. CNN performance was assessed using standard metrics and detailed error analyses, including network activation maps. RESULTS: The CNN classified four map-selectable display images with average accuracies of 0.983 and 0.958 for the training and test sets, respectively. Network activation maps revealed that the model was heavily influenced by clinically relevant spatial regions. CONCLUSIONS: Deep learning using color-coded Scheimpflug images achieved high diagnostic performance with regard to discriminating keratoconus, subclinical keratoconus, and normal corneal images at levels that may be useful in clinical practice when screening refractive surgery candidates. TRANSLATIONAL RELEVANCE: Deep learning can assist human graders in keratoconus detection in Scheimpflug camera color-coded corneal tomography maps. The Association for Research in Vision and Ophthalmology 2020-12-18 /pmc/articles/PMC7757611/ /pubmed/33384884 http://dx.doi.org/10.1167/tvst.9.13.30 Text en Copyright 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Article
Abdelmotaal, Hazem
Mostafa, Magdi M.
Mostafa, Ali N. R.
Mohamed, Abdelsalam A.
Abdelazeem, Khaled
Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning
title Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning
title_full Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning
title_fullStr Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning
title_full_unstemmed Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning
title_short Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning
title_sort classification of color-coded scheimpflug camera corneal tomography images using deep learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757611/
https://www.ncbi.nlm.nih.gov/pubmed/33384884
http://dx.doi.org/10.1167/tvst.9.13.30
work_keys_str_mv AT abdelmotaalhazem classificationofcolorcodedscheimpflugcameracornealtomographyimagesusingdeeplearning
AT mostafamagdim classificationofcolorcodedscheimpflugcameracornealtomographyimagesusingdeeplearning
AT mostafaalinr classificationofcolorcodedscheimpflugcameracornealtomographyimagesusingdeeplearning
AT mohamedabdelsalama classificationofcolorcodedscheimpflugcameracornealtomographyimagesusingdeeplearning
AT abdelazeemkhaled classificationofcolorcodedscheimpflugcameracornealtomographyimagesusingdeeplearning