Cargando…
Classification of Color-Coded Scheimpflug Camera Corneal Tomography Images Using Deep Learning
PURPOSE: To assess the use of deep learning for high-performance image classification of color-coded corneal maps obtained using a Scheimpflug camera. METHODS: We used a domain-specific convolutional neural network (CNN) to implement deep learning. CNN performance was assessed using standard metrics...
Autores principales: | Abdelmotaal, Hazem, Mostafa, Magdi M., Mostafa, Ali N. R., Mohamed, Abdelsalam A., Abdelazeem, Khaled |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757611/ https://www.ncbi.nlm.nih.gov/pubmed/33384884 http://dx.doi.org/10.1167/tvst.9.13.30 |
Ejemplares similares
-
Pix2pix Conditional Generative Adversarial Networks for Scheimpflug Camera Color-Coded Corneal Tomography Image Generation
por: Abdelmotaal, Hazem, et al.
Publicado: (2021) -
Q-value customized versus wavefront-optimized ablation in femtosecond laser-assisted LASIK for myopia and myopic astigmatism: a prospective contralateral comparative study
por: Mostafa, Magdi Mohammad, et al.
Publicado: (2022) -
Safety of Trypan Blue Capsule Staining to Corneal Endothelium in Patients with Diabetic Retinopathy
por: Abdelmotaal, Hazem, et al.
Publicado: (2019) -
Corneal power changes with Scheimpflug rotating camera after hyperopic LASIK
por: Whang, Woong-Joo, et al.
Publicado: (2018) -
Analysis of total corneal astigmatism with a rotating Scheimpflug camera in keratoconus
por: Kim, Jinho, et al.
Publicado: (2020)