Cargando…
Assessing the risk of dengue severity using demographic information and laboratory test results with machine learning
BACKGROUND: Dengue virus causes a wide spectrum of disease, which ranges from subclinical disease to severe dengue shock syndrome. However, estimating the risk of severe outcomes using clinical presentation or laboratory test results for rapid patient triage remains a challenge. Here, we aimed to de...
Autores principales: | Huang, Sheng-Wen, Tsai, Huey-Pin, Hung, Su-Jhen, Ko, Wen-Chien, Wang, Jen-Ren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757819/ https://www.ncbi.nlm.nih.gov/pubmed/33362244 http://dx.doi.org/10.1371/journal.pntd.0008960 |
Ejemplares similares
-
Assessment of the Risk of Severe Dengue Using Intrahost Viral Population in Dengue Virus Serotype 2 Patients via Machine Learning
por: Hung, Su-Jhen, et al.
Publicado: (2022) -
Impact of Intrahost NS5 Nucleotide Variations on Dengue Virus Replication
por: Cheng, Dayna, et al.
Publicado: (2022) -
Increasing Cytomegalovirus Detection Rate from Respiratory Tract Specimens by a New Laboratory-Developed Automated Molecular Diagnostic Test
por: Tsai, Huey-Pin, et al.
Publicado: (2020) -
Validation and Application of a Commercial Quantitative Real-Time Reverse Transcriptase-PCR Assay in Investigation of a Large Dengue Virus Outbreak in Southern Taiwan
por: Tsai, Huey-Pin, et al.
Publicado: (2016) -
Respiratory viral infections in pragmatically selected adults in intensive care units
por: Cia, Cong-Tat, et al.
Publicado: (2021)