Cargando…
Preparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol
The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly form...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shaheed Beheshti University of Medical Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757990/ https://www.ncbi.nlm.nih.gov/pubmed/33680009 http://dx.doi.org/10.22037/ijpr.2019.15208.12963 |
_version_ | 1783626843396505600 |
---|---|
author | Mehrabani Yeganeh, Ehsan Bagheri, Hossein Mahjub, Reza |
author_facet | Mehrabani Yeganeh, Ehsan Bagheri, Hossein Mahjub, Reza |
author_sort | Mehrabani Yeganeh, Ehsan |
collection | PubMed |
description | The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSPG). The SLN formulations containing AMB-DSPG complexes were prepared using glycerol monostearate (GMS) as the lipid matrix and soybean lecithin and tween 80 as the surfactants by solvent emulsification-evaporation technique. The nanoparticles were optimized through a fractional factorial design. DPIs were prepared by lyophilization technique using lactose as the inhalational carrier and then after, the formulations were evaluated in terms of aerodynamic particle size distribution using an Andersen cascade impactor. The morphology of the particles was examined using scanning electron microscopy (SEM) and in-vitro drug release profiles were evaluated. Following the statistical results, the particle size, Poly dispersity index (PdI), zeta potential, entrapment efficiency (EE%), and drug loading (DL%) of the optimized SLNs were 187.04 ± 11.97 nm, 0.188 ± 0.028, -30.16 ± 1.6 mV, 89.3 ± 3.47 % and 2.76 ± 0.32 %, respectively. Formulation containing 10% w/v of lactose with the calculated fine particle fraction value as 72.57 ± 4.33% exhibited the appropriate aerodynamic characteristics for pulmonary drug delivery. SEM images revealed de-agglomerated particles. In-vitro release studies showed sustained release of AMB from the carriers and the release kinetics were best fitted to the first order kinetic model. |
format | Online Article Text |
id | pubmed-7757990 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Shaheed Beheshti University of Medical Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-77579902021-03-05 Preparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol Mehrabani Yeganeh, Ehsan Bagheri, Hossein Mahjub, Reza Iran J Pharm Res Original Article The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSPG). The SLN formulations containing AMB-DSPG complexes were prepared using glycerol monostearate (GMS) as the lipid matrix and soybean lecithin and tween 80 as the surfactants by solvent emulsification-evaporation technique. The nanoparticles were optimized through a fractional factorial design. DPIs were prepared by lyophilization technique using lactose as the inhalational carrier and then after, the formulations were evaluated in terms of aerodynamic particle size distribution using an Andersen cascade impactor. The morphology of the particles was examined using scanning electron microscopy (SEM) and in-vitro drug release profiles were evaluated. Following the statistical results, the particle size, Poly dispersity index (PdI), zeta potential, entrapment efficiency (EE%), and drug loading (DL%) of the optimized SLNs were 187.04 ± 11.97 nm, 0.188 ± 0.028, -30.16 ± 1.6 mV, 89.3 ± 3.47 % and 2.76 ± 0.32 %, respectively. Formulation containing 10% w/v of lactose with the calculated fine particle fraction value as 72.57 ± 4.33% exhibited the appropriate aerodynamic characteristics for pulmonary drug delivery. SEM images revealed de-agglomerated particles. In-vitro release studies showed sustained release of AMB from the carriers and the release kinetics were best fitted to the first order kinetic model. Shaheed Beheshti University of Medical Sciences 2020 /pmc/articles/PMC7757990/ /pubmed/33680009 http://dx.doi.org/10.22037/ijpr.2019.15208.12963 Text en This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Mehrabani Yeganeh, Ehsan Bagheri, Hossein Mahjub, Reza Preparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol |
title | Preparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol |
title_full | Preparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol |
title_fullStr | Preparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol |
title_full_unstemmed | Preparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol |
title_short | Preparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol |
title_sort | preparation, statistical optimization and in-vitro characterization of a dry powder inhaler (dpi) containing solid lipid nanoparticles encapsulating amphotericin b: ion paired complexes with distearoyl phosphatidylglycerol |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757990/ https://www.ncbi.nlm.nih.gov/pubmed/33680009 http://dx.doi.org/10.22037/ijpr.2019.15208.12963 |
work_keys_str_mv | AT mehrabaniyeganehehsan preparationstatisticaloptimizationandinvitrocharacterizationofadrypowderinhalerdpicontainingsolidlipidnanoparticlesencapsulatingamphotericinbionpairedcomplexeswithdistearoylphosphatidylglycerol AT bagherihossein preparationstatisticaloptimizationandinvitrocharacterizationofadrypowderinhalerdpicontainingsolidlipidnanoparticlesencapsulatingamphotericinbionpairedcomplexeswithdistearoylphosphatidylglycerol AT mahjubreza preparationstatisticaloptimizationandinvitrocharacterizationofadrypowderinhalerdpicontainingsolidlipidnanoparticlesencapsulatingamphotericinbionpairedcomplexeswithdistearoylphosphatidylglycerol |