Cargando…

Very deep super-resolution for efficient cone-beam computed tomographic image restoration

PURPOSE: As cone-beam computed tomography (CBCT) has become the most widely used 3-dimensional (3D) imaging modality in the dental field, storage space and costs for large-capacity data have become an important issue. Therefore, if 3D data can be stored at a clinically acceptable compression rate, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Hwang, Jae Joon, Jung, Yun-Hoa, Cho, Bong-Hae, Heo, Min-Suk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Academy of Oral and Maxillofacial Radiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758262/
https://www.ncbi.nlm.nih.gov/pubmed/33409142
http://dx.doi.org/10.5624/isd.2020.50.4.331
Descripción
Sumario:PURPOSE: As cone-beam computed tomography (CBCT) has become the most widely used 3-dimensional (3D) imaging modality in the dental field, storage space and costs for large-capacity data have become an important issue. Therefore, if 3D data can be stored at a clinically acceptable compression rate, the burden in terms of storage space and cost can be reduced and data can be managed more efficiently. In this study, a deep learning network for super-resolution was tested to restore compressed virtual CBCT images. MATERIALS AND METHODS: Virtual CBCT image data were created with a publicly available online dataset (CQ500) of multidetector computed tomography images using CBCT reconstruction software (TIGRE). A very deep super-resolution (VDSR) network was trained to restore high-resolution virtual CBCT images from the low-resolution virtual CBCT images. RESULTS: The images reconstructed by VDSR showed better image quality than bicubic interpolation in restored images at various scale ratios. The highest scale ratio with clinically acceptable reconstruction accuracy using VDSR was 2.1. CONCLUSION: VDSR showed promising restoration accuracy in this study. In the future, it will be necessary to experiment with new deep learning algorithms and large-scale data for clinical application of this technology.