Cargando…
A lightweight convolutional neural network for assessing an EEG risk marker for sudden unexpected death in epilepsy
BACKGROUND: Convolutional neural network (CNN) has achieved state-of-art performance in many electroencephalogram (EEG) related studies. However, the application of CNN in prediction of risk factors for sudden unexpected death in epilepsy (SUDEP) remains as an underexplored area. It is unclear how t...
Autores principales: | Zhu, Cong, Kim, Yejin, Jiang, Xiaoqian, Lhatoo, Samden, Jaison, Hampson, Zhang, Guo-Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758925/ https://www.ncbi.nlm.nih.gov/pubmed/33357242 http://dx.doi.org/10.1186/s12911-020-01310-y |
Ejemplares similares
-
Automated detection of activity onset after postictal generalized EEG suppression
por: Lamichhane, Bishal, et al.
Publicado: (2020) -
A multimodal clinical data resource for personalized risk assessment of sudden unexpected death in epilepsy
por: Li, Xiaojin, et al.
Publicado: (2022) -
Structural imaging biomarkers of sudden unexpected death in epilepsy
por: Wandschneider, Britta, et al.
Publicado: (2015) -
Neuroimaging of Sudden Unexpected Death in Epilepsy (SUDEP): Insights From Structural and Resting-State Functional MRI Studies
por: Allen, Luke A., et al.
Publicado: (2019) -
Audit of practice in sudden unexpected death in epilepsy (SUDEP) post mortems and neuropathological findings
por: Thom, Maria, et al.
Publicado: (2015)