Cargando…
Growth of Nanostructured Silver Flowers by Metal-Mediated Catalysis for Surface-Enhanced Raman Spectroscopy Application
[Image: see text] Metallic flowers with nanoscale surface roughness can provide a platform for highly sensitive and reproductive surface-enhanced Raman spectroscopy (SERS). Here, we present a method to grow a nanostructured silver flower (NSF) at the apex of a plasmonic tip based on metal-mediated c...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758958/ https://www.ncbi.nlm.nih.gov/pubmed/33376902 http://dx.doi.org/10.1021/acsomega.0c05021 |
Sumario: | [Image: see text] Metallic flowers with nanoscale surface roughness can provide a platform for highly sensitive and reproductive surface-enhanced Raman spectroscopy (SERS). Here, we present a method to grow a nanostructured silver flower (NSF) at the apex of a plasmonic tip based on metal-mediated catalysis, where the NSF was rapidly generated in no more than 1 min. The NSF was used as the SERS substrate under linear polarization beam (LPB) excitation to achieve a 10(–9) M detection sensitivity for the malachite green analyte. The reproducibility for SERS is examined to have been guaranteed by comparing Raman intensity enhanced by different NSFs. Compared with the LPB, the azimuthal vector beam (AVB) excitation can further improve the SERS activity of the NSF, which is consistent with the simulation result that the gap mode can be effectively generated between two adjacent Ag nanoparticles (NPs) and between the NPs and the Ag pyramids on the surface of the NSF under AVB illumination. This work makes it promising for plasmonic tip-mediated catalysis to be applied in nanofabrication, the products of which can be further exploited in nanostructure-based ultrasensitive detection. |
---|