Cargando…
Swarm-CG: Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm Optimization
[Image: see text] We present Swarm-CG, a versatile software for the automatic iterative parametrization of bonded parameters in coarse-grained (CG) models, ideal in combination with popular CG force fields such as MARTINI. By coupling fuzzy self-tuning particle swarm optimization to Boltzmann invers...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758974/ https://www.ncbi.nlm.nih.gov/pubmed/33376921 http://dx.doi.org/10.1021/acsomega.0c05469 |
_version_ | 1783627037190127616 |
---|---|
author | Empereur-Mot, Charly Pesce, Luca Doni, Giovanni Bochicchio, Davide Capelli, Riccardo Perego, Claudio Pavan, Giovanni M. |
author_facet | Empereur-Mot, Charly Pesce, Luca Doni, Giovanni Bochicchio, Davide Capelli, Riccardo Perego, Claudio Pavan, Giovanni M. |
author_sort | Empereur-Mot, Charly |
collection | PubMed |
description | [Image: see text] We present Swarm-CG, a versatile software for the automatic iterative parametrization of bonded parameters in coarse-grained (CG) models, ideal in combination with popular CG force fields such as MARTINI. By coupling fuzzy self-tuning particle swarm optimization to Boltzmann inversion, Swarm-CG performs accurate bottom-up parametrization of bonded terms in CG models composed of up to 200 pseudo atoms within 4–24 h on standard desktop machines, using default settings. The software benefits from a user-friendly interface and two different usage modes (default and advanced). We particularly expect Swarm-CG to support and facilitate the development of new CG models for the study of complex molecular systems interesting for bio- and nanotechnology. Excellent performances are demonstrated using a benchmark of 9 molecules of diverse nature, structural complexity, and size. Swarm-CG is available with all its dependencies via the Python Package Index (PIP package: swarm-cg). Demonstration data are available at: www.github.com/GMPavanLab/SwarmCG. |
format | Online Article Text |
id | pubmed-7758974 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-77589742020-12-28 Swarm-CG: Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm Optimization Empereur-Mot, Charly Pesce, Luca Doni, Giovanni Bochicchio, Davide Capelli, Riccardo Perego, Claudio Pavan, Giovanni M. ACS Omega [Image: see text] We present Swarm-CG, a versatile software for the automatic iterative parametrization of bonded parameters in coarse-grained (CG) models, ideal in combination with popular CG force fields such as MARTINI. By coupling fuzzy self-tuning particle swarm optimization to Boltzmann inversion, Swarm-CG performs accurate bottom-up parametrization of bonded terms in CG models composed of up to 200 pseudo atoms within 4–24 h on standard desktop machines, using default settings. The software benefits from a user-friendly interface and two different usage modes (default and advanced). We particularly expect Swarm-CG to support and facilitate the development of new CG models for the study of complex molecular systems interesting for bio- and nanotechnology. Excellent performances are demonstrated using a benchmark of 9 molecules of diverse nature, structural complexity, and size. Swarm-CG is available with all its dependencies via the Python Package Index (PIP package: swarm-cg). Demonstration data are available at: www.github.com/GMPavanLab/SwarmCG. American Chemical Society 2020-12-07 /pmc/articles/PMC7758974/ /pubmed/33376921 http://dx.doi.org/10.1021/acsomega.0c05469 Text en © 2020 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Empereur-Mot, Charly Pesce, Luca Doni, Giovanni Bochicchio, Davide Capelli, Riccardo Perego, Claudio Pavan, Giovanni M. Swarm-CG: Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm Optimization |
title | Swarm-CG: Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm Optimization |
title_full | Swarm-CG: Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm Optimization |
title_fullStr | Swarm-CG: Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm Optimization |
title_full_unstemmed | Swarm-CG: Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm Optimization |
title_short | Swarm-CG: Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm Optimization |
title_sort | swarm-cg: automatic parametrization of bonded terms in martini-based coarse-grained models of simple to complex molecules via fuzzy self-tuning particle swarm optimization |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758974/ https://www.ncbi.nlm.nih.gov/pubmed/33376921 http://dx.doi.org/10.1021/acsomega.0c05469 |
work_keys_str_mv | AT empereurmotcharly swarmcgautomaticparametrizationofbondedtermsinmartinibasedcoarsegrainedmodelsofsimpletocomplexmoleculesviafuzzyselftuningparticleswarmoptimization AT pesceluca swarmcgautomaticparametrizationofbondedtermsinmartinibasedcoarsegrainedmodelsofsimpletocomplexmoleculesviafuzzyselftuningparticleswarmoptimization AT donigiovanni swarmcgautomaticparametrizationofbondedtermsinmartinibasedcoarsegrainedmodelsofsimpletocomplexmoleculesviafuzzyselftuningparticleswarmoptimization AT bochicchiodavide swarmcgautomaticparametrizationofbondedtermsinmartinibasedcoarsegrainedmodelsofsimpletocomplexmoleculesviafuzzyselftuningparticleswarmoptimization AT capelliriccardo swarmcgautomaticparametrizationofbondedtermsinmartinibasedcoarsegrainedmodelsofsimpletocomplexmoleculesviafuzzyselftuningparticleswarmoptimization AT peregoclaudio swarmcgautomaticparametrizationofbondedtermsinmartinibasedcoarsegrainedmodelsofsimpletocomplexmoleculesviafuzzyselftuningparticleswarmoptimization AT pavangiovannim swarmcgautomaticparametrizationofbondedtermsinmartinibasedcoarsegrainedmodelsofsimpletocomplexmoleculesviafuzzyselftuningparticleswarmoptimization |