Cargando…
Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm
The coronavirus disease 2019 (COVID-19) pandemic has become the number one health problem worldwide. As of August 2020, it has affected more than 18 million humans and caused over 700,000 deaths worldwide. COVID-19 is an infectious disease that can lead to severe acute respiratory syndrome. Under ce...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759543/ https://www.ncbi.nlm.nih.gov/pubmed/33362557 http://dx.doi.org/10.3389/fphar.2020.602999 |
_version_ | 1783627132299116544 |
---|---|
author | Desjarlais, Michel Wirth, Maëlle Lahaie, Isabelle Ruknudin, Pakiza Hardy, Pierre Rivard, Alain Chemtob, Sylvain |
author_facet | Desjarlais, Michel Wirth, Maëlle Lahaie, Isabelle Ruknudin, Pakiza Hardy, Pierre Rivard, Alain Chemtob, Sylvain |
author_sort | Desjarlais, Michel |
collection | PubMed |
description | The coronavirus disease 2019 (COVID-19) pandemic has become the number one health problem worldwide. As of August 2020, it has affected more than 18 million humans and caused over 700,000 deaths worldwide. COVID-19 is an infectious disease that can lead to severe acute respiratory syndrome. Under certain circumstances, the viral infection leads to excessive and uncontrolled inflammatory response, which is associated with the massive release of inflammatory cytokines in pulmonary alveolar structures. This phenomenon has been referred to as the “cytokine storm,” and it is closely linked to lung injury, acute respiratory syndrome and mortality. Unfortunately, there is currently no vaccine available to prevent the infection, and no effective treatment is available to reduce the mortality associated with the severe form of the disease. The cytokine storm associate with COVID-19 shows similarities with those observed in other pathologies such as sepsis, acute respiratory distress syndrome, acute lung injury and other viral infection including severe cases of influenza. However, the specific mechanisms that cause and modulate the cytokine storm in the different conditions remain to be determined. micro-RNAs are important regulators of gene expression, including key inflammatory cytokines involved in the massive recruitment of immune cells to the lungs such as IL1β, IL6, and TNFα. In recent years, it has been shown that nutraceutical agents can modulate the expression of miRs involved in the regulation of cytokines in various inflammatory diseases. Here we review the potential role of inflammatory-regulating-miRs in the cytokine storm associated with COVID-19, and propose that nutraceutical agents may represent a supportive therapeutic approach to modulate dysregulated miRs in this condition, providing benefits in severe respiratory diseases. |
format | Online Article Text |
id | pubmed-7759543 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77595432020-12-26 Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm Desjarlais, Michel Wirth, Maëlle Lahaie, Isabelle Ruknudin, Pakiza Hardy, Pierre Rivard, Alain Chemtob, Sylvain Front Pharmacol Review The coronavirus disease 2019 (COVID-19) pandemic has become the number one health problem worldwide. As of August 2020, it has affected more than 18 million humans and caused over 700,000 deaths worldwide. COVID-19 is an infectious disease that can lead to severe acute respiratory syndrome. Under certain circumstances, the viral infection leads to excessive and uncontrolled inflammatory response, which is associated with the massive release of inflammatory cytokines in pulmonary alveolar structures. This phenomenon has been referred to as the “cytokine storm,” and it is closely linked to lung injury, acute respiratory syndrome and mortality. Unfortunately, there is currently no vaccine available to prevent the infection, and no effective treatment is available to reduce the mortality associated with the severe form of the disease. The cytokine storm associate with COVID-19 shows similarities with those observed in other pathologies such as sepsis, acute respiratory distress syndrome, acute lung injury and other viral infection including severe cases of influenza. However, the specific mechanisms that cause and modulate the cytokine storm in the different conditions remain to be determined. micro-RNAs are important regulators of gene expression, including key inflammatory cytokines involved in the massive recruitment of immune cells to the lungs such as IL1β, IL6, and TNFα. In recent years, it has been shown that nutraceutical agents can modulate the expression of miRs involved in the regulation of cytokines in various inflammatory diseases. Here we review the potential role of inflammatory-regulating-miRs in the cytokine storm associated with COVID-19, and propose that nutraceutical agents may represent a supportive therapeutic approach to modulate dysregulated miRs in this condition, providing benefits in severe respiratory diseases. Frontiers Media S.A. 2020-12-11 /pmc/articles/PMC7759543/ /pubmed/33362557 http://dx.doi.org/10.3389/fphar.2020.602999 Text en Copyright © 2020 Desjarlais, Wirth, Lahaie, Ruknudin, Hardy, Rivard and Chemtob http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Review Desjarlais, Michel Wirth, Maëlle Lahaie, Isabelle Ruknudin, Pakiza Hardy, Pierre Rivard, Alain Chemtob, Sylvain Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm |
title | Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm |
title_full | Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm |
title_fullStr | Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm |
title_full_unstemmed | Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm |
title_short | Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm |
title_sort | nutraceutical targeting of inflammation-modulating micrornas in severe forms of covid-19: a novel approach to prevent the cytokine storm |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759543/ https://www.ncbi.nlm.nih.gov/pubmed/33362557 http://dx.doi.org/10.3389/fphar.2020.602999 |
work_keys_str_mv | AT desjarlaismichel nutraceuticaltargetingofinflammationmodulatingmicrornasinsevereformsofcovid19anovelapproachtopreventthecytokinestorm AT wirthmaelle nutraceuticaltargetingofinflammationmodulatingmicrornasinsevereformsofcovid19anovelapproachtopreventthecytokinestorm AT lahaieisabelle nutraceuticaltargetingofinflammationmodulatingmicrornasinsevereformsofcovid19anovelapproachtopreventthecytokinestorm AT ruknudinpakiza nutraceuticaltargetingofinflammationmodulatingmicrornasinsevereformsofcovid19anovelapproachtopreventthecytokinestorm AT hardypierre nutraceuticaltargetingofinflammationmodulatingmicrornasinsevereformsofcovid19anovelapproachtopreventthecytokinestorm AT rivardalain nutraceuticaltargetingofinflammationmodulatingmicrornasinsevereformsofcovid19anovelapproachtopreventthecytokinestorm AT chemtobsylvain nutraceuticaltargetingofinflammationmodulatingmicrornasinsevereformsofcovid19anovelapproachtopreventthecytokinestorm |