Cargando…
Flux Coupling and the Objective Functions’ Length in EFMs
Structural analysis of constraint-based metabolic network models attempts to find the network’s properties by searching for subsets of suitable modes or Elementary Flux Modes (EFMs). One useful approach is based on Linear Program (LP) techniques, which introduce an objective function to convert the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759806/ https://www.ncbi.nlm.nih.gov/pubmed/33260526 http://dx.doi.org/10.3390/metabo10120489 |
Sumario: | Structural analysis of constraint-based metabolic network models attempts to find the network’s properties by searching for subsets of suitable modes or Elementary Flux Modes (EFMs). One useful approach is based on Linear Program (LP) techniques, which introduce an objective function to convert the stoichiometric and thermodynamic constraints into a linear program (LP), using additional constraints to generate different nontrivial modes. This work introduces FLFS-FC (Fixed Length Function Sampling with Flux Coupling), a new approach to increase the efficiency of generation of large sets of different EFMs for the network. FLFS-FC is based on the importance of the length of the objective functions used in the associated LP problem and the imposition of additional negative constraints. Our proposal overrides some of the known drawbacks associated with the EFM extraction, such as the appearance of unfeasible problems or multiple repeated solutions arising from different LP problems. |
---|