Cargando…

A Continuous Cell Separation and Collection Approach on a Microfilter and Negative Dielectrophoresis Combined Chip

Cell separation plays an important role in the fields of analytical chemistry and biomedicine. To solve the blockage problem and improve the separation throughput in the traditional microstructure filtration-based separation approach, a continuous cell separation and collection approach via micropos...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Qiong, Zhang, Xiaoling, Yin, Danfen, Deng, Jinan, Yang, Jun, Hu, Ning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759882/
https://www.ncbi.nlm.nih.gov/pubmed/33255917
http://dx.doi.org/10.3390/mi11121037
Descripción
Sumario:Cell separation plays an important role in the fields of analytical chemistry and biomedicine. To solve the blockage problem and improve the separation throughput in the traditional microstructure filtration-based separation approach, a continuous cell separation and collection approach via micropost array railing on a microfilter and negative dielectrophoresis combined chip is proposed. By tilting the micropost array at a certain angle, microparticles or cells enter the collection area under micropost array railing. The effects of the inclination angle of the micropost array and the electrode distance on the microparticle collection efficiency were investigated. Based on the optimized microfluidic chip structure, 37- and 16.3-μm particles were collected with 85% and 89% efficiencies, respectively. Additionally, algal cells were separated and collected by using the optimized microchip. The chip also had good separation and collection effects on biological samples, which effectively solved the blockage problem and improved the separation throughput, laying a foundation for subsequent microstructure filtration separation-based research and application.