Cargando…
Functional Kernel Density Estimation: Point and Fourier Approaches to Time Series Anomaly Detection
We present an unsupervised method to detect anomalous time series among a collection of time series. To do so, we extend traditional Kernel Density Estimation for estimating probability distributions in Euclidean space to Hilbert spaces. The estimated probability densities we derive can be obtained...
Autores principales: | Lindstrom, Michael R., Jung, Hyuntae, Larocque, Denis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759980/ https://www.ncbi.nlm.nih.gov/pubmed/33266340 http://dx.doi.org/10.3390/e22121363 |
Ejemplares similares
-
Anomaly detection for monitoring: a statistical approach to time series anomaly detection
por: Jinka, Preetam, et al.
Publicado: (2015) -
Fourier Ring Correlation and Anisotropic Kernel Density Estimation Improve Deep Learning Based SMLM Reconstruction of Microtubules
por: Berberich, Andreas, et al.
Publicado: (2021) -
Contingent Kernel Density Estimation
por: Fortmann-Roe, Scott, et al.
Publicado: (2012) -
Fourier Analysis of time series : an introduction /
por: Bloomfield, Peter
Publicado: (1976) -
Data-Driven Anomaly Detection Approach for Time-Series Streaming Data
por: Zhang, Minghu, et al.
Publicado: (2020)