Cargando…
Molecular Dynamics Simulations of Ion Drift in Nanochannel Water Flow
The present paper employs Molecular Dynamics (MD) simulations to reveal nanoscale ion separation from water/ion flows under an external electric field in Poiseuille-like nanochannels. Ions are drifted to the sidewalls due to the effect of wall-normal applied electric fields while flowing inside the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759997/ https://www.ncbi.nlm.nih.gov/pubmed/33260616 http://dx.doi.org/10.3390/nano10122373 |
_version_ | 1783627228264792064 |
---|---|
author | Sofos, Filippos Karakasidis, Theodoros Sarris, Ioannis E. |
author_facet | Sofos, Filippos Karakasidis, Theodoros Sarris, Ioannis E. |
author_sort | Sofos, Filippos |
collection | PubMed |
description | The present paper employs Molecular Dynamics (MD) simulations to reveal nanoscale ion separation from water/ion flows under an external electric field in Poiseuille-like nanochannels. Ions are drifted to the sidewalls due to the effect of wall-normal applied electric fields while flowing inside the channel. Fresh water is obtained from the channel centerline, while ions are rejected near the walls, similar to the Capacitive DeIonization (CDI) principles. Parameters affecting the separation process, i.e., simulation duration, percentage of the removal, volumetric flow rate, and the length of the nanochannel incorporated, are affected by the electric field magnitude, ion correlations, and channel height. For the range of channels investigated here, an ion removal percentage near 100% is achieved in most cases in less than 20 ns for an electric field magnitude of E = 2.0 V/Å. In the nutshell, the ion drift is found satisfactory in the proposed nanoscale method, and it is exploited in a practical, small-scale system. Theoretical investigation from this work can be projected for systems at larger scales to perform fundamental yet elusive studies on water/ion separation issues at the nanoscale and, one step further, for designing real devices as well. The advantages over existing methods refer to the ease of implementation, low cost, and energy consumption, without the need to confront membrane fouling problems and complex electrode material fabrication employed in CDI. |
format | Online Article Text |
id | pubmed-7759997 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77599972020-12-26 Molecular Dynamics Simulations of Ion Drift in Nanochannel Water Flow Sofos, Filippos Karakasidis, Theodoros Sarris, Ioannis E. Nanomaterials (Basel) Article The present paper employs Molecular Dynamics (MD) simulations to reveal nanoscale ion separation from water/ion flows under an external electric field in Poiseuille-like nanochannels. Ions are drifted to the sidewalls due to the effect of wall-normal applied electric fields while flowing inside the channel. Fresh water is obtained from the channel centerline, while ions are rejected near the walls, similar to the Capacitive DeIonization (CDI) principles. Parameters affecting the separation process, i.e., simulation duration, percentage of the removal, volumetric flow rate, and the length of the nanochannel incorporated, are affected by the electric field magnitude, ion correlations, and channel height. For the range of channels investigated here, an ion removal percentage near 100% is achieved in most cases in less than 20 ns for an electric field magnitude of E = 2.0 V/Å. In the nutshell, the ion drift is found satisfactory in the proposed nanoscale method, and it is exploited in a practical, small-scale system. Theoretical investigation from this work can be projected for systems at larger scales to perform fundamental yet elusive studies on water/ion separation issues at the nanoscale and, one step further, for designing real devices as well. The advantages over existing methods refer to the ease of implementation, low cost, and energy consumption, without the need to confront membrane fouling problems and complex electrode material fabrication employed in CDI. MDPI 2020-11-28 /pmc/articles/PMC7759997/ /pubmed/33260616 http://dx.doi.org/10.3390/nano10122373 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sofos, Filippos Karakasidis, Theodoros Sarris, Ioannis E. Molecular Dynamics Simulations of Ion Drift in Nanochannel Water Flow |
title | Molecular Dynamics Simulations of Ion Drift in Nanochannel Water Flow |
title_full | Molecular Dynamics Simulations of Ion Drift in Nanochannel Water Flow |
title_fullStr | Molecular Dynamics Simulations of Ion Drift in Nanochannel Water Flow |
title_full_unstemmed | Molecular Dynamics Simulations of Ion Drift in Nanochannel Water Flow |
title_short | Molecular Dynamics Simulations of Ion Drift in Nanochannel Water Flow |
title_sort | molecular dynamics simulations of ion drift in nanochannel water flow |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759997/ https://www.ncbi.nlm.nih.gov/pubmed/33260616 http://dx.doi.org/10.3390/nano10122373 |
work_keys_str_mv | AT sofosfilippos moleculardynamicssimulationsofiondriftinnanochannelwaterflow AT karakasidistheodoros moleculardynamicssimulationsofiondriftinnanochannelwaterflow AT sarrisioannise moleculardynamicssimulationsofiondriftinnanochannelwaterflow |