Cargando…

Compressive Behaviour of Lattice Structures Manufactured by Polyjet Technologies

Additive manufacturing (AM) techniques can help to reduce the time and cost for manufacturing complex shaped parts. The main goal of this research was to determine the best strength structure of six different types of lattice cells, manufactured using the Poly Jet AM technology. In order to perform...

Descripción completa

Detalles Bibliográficos
Autores principales: Lancea, Camil, Campbell, Ian, Chicos, Lucia-Antoneta, Zaharia, Sebastian-Marian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760018/
https://www.ncbi.nlm.nih.gov/pubmed/33255192
http://dx.doi.org/10.3390/polym12122767
Descripción
Sumario:Additive manufacturing (AM) techniques can help to reduce the time and cost for manufacturing complex shaped parts. The main goal of this research was to determine the best strength structure of six different types of lattice cells, manufactured using the Poly Jet AM technology. In order to perform the tests, six samples with the same structure were created for each lattice type. For testing the samples in compression, an electromechanical test machine was used. finite element analysis (FEA) analysis was used in order to determine the area where the greatest stresses occured and to estimate the maximal compressive strength. The strongest structure was determined by obtaining the maximal compressive strength. This was calculated in two ways: as a ratio between the maximal supported force and the mass of the sample (N/g) and as a ratio between the maximal supported force and the critical section of the sample (MPa).