Cargando…

Synthesis of Terpyridine End-Modified Polystyrenes through ATRP for Facile Construction of Metallo-Supramolecular P3HT-b-PS Diblock Copolymers

Complementary complexation between 2,2′:6′,2″-terpyridine (tpy) and 6,6″-dianthracenyl-substituted tpy in the presence of Zn(II) ions provided an efficient strategy for construction of metallo-supramolecular diblock copolymers. To synthesize well-defined tpy-modified polystyrenes (PSs), an Fe(II) bi...

Descripción completa

Detalles Bibliográficos
Autores principales: Tu, Tsung-Han, Chan, Yi-Tsu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760035/
https://www.ncbi.nlm.nih.gov/pubmed/33260312
http://dx.doi.org/10.3390/polym12122842
_version_ 1783627237260525568
author Tu, Tsung-Han
Chan, Yi-Tsu
author_facet Tu, Tsung-Han
Chan, Yi-Tsu
author_sort Tu, Tsung-Han
collection PubMed
description Complementary complexation between 2,2′:6′,2″-terpyridine (tpy) and 6,6″-dianthracenyl-substituted tpy in the presence of Zn(II) ions provided an efficient strategy for construction of metallo-supramolecular diblock copolymers. To synthesize well-defined tpy-modified polystyrenes (PSs), an Fe(II) bis(tpy) complex bearing α-bromoester as a metallo-initiator was applied to atom transfer radical polymerization (ATRP) to avoid poisoning the Cu(I) catalyst. Subsequently, a series of tpy-functionalized PSs was obtained after the decomplexation of <tpy-Fe(II)-tpy> junction by tetrakis(triethylammonium) ethylenediaminetetraacetate (TEA-EDTA) under mild conditions. The metallo-supramolecular poly(3-hexylthiophene) (P3HT)-block-PS diblock copolymers were prepared by simply mixing the corresponding terminally tpy-modified homopolymers with Zn(II) ions, and further characterized by (1)H NMR and diffusion ordered spectroscopy (DOSY) experiments. The approach using metallo-initiators for ATRP offers an opportunity to construct tpy-functionalized polymers with controllable molecular weights and low polydispersities. Through the spontaneous heteroleptic complexation, a variety of metallo-supramolecular diblock copolymers with tunable block ratios can be easily constructed.
format Online
Article
Text
id pubmed-7760035
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77600352020-12-26 Synthesis of Terpyridine End-Modified Polystyrenes through ATRP for Facile Construction of Metallo-Supramolecular P3HT-b-PS Diblock Copolymers Tu, Tsung-Han Chan, Yi-Tsu Polymers (Basel) Article Complementary complexation between 2,2′:6′,2″-terpyridine (tpy) and 6,6″-dianthracenyl-substituted tpy in the presence of Zn(II) ions provided an efficient strategy for construction of metallo-supramolecular diblock copolymers. To synthesize well-defined tpy-modified polystyrenes (PSs), an Fe(II) bis(tpy) complex bearing α-bromoester as a metallo-initiator was applied to atom transfer radical polymerization (ATRP) to avoid poisoning the Cu(I) catalyst. Subsequently, a series of tpy-functionalized PSs was obtained after the decomplexation of <tpy-Fe(II)-tpy> junction by tetrakis(triethylammonium) ethylenediaminetetraacetate (TEA-EDTA) under mild conditions. The metallo-supramolecular poly(3-hexylthiophene) (P3HT)-block-PS diblock copolymers were prepared by simply mixing the corresponding terminally tpy-modified homopolymers with Zn(II) ions, and further characterized by (1)H NMR and diffusion ordered spectroscopy (DOSY) experiments. The approach using metallo-initiators for ATRP offers an opportunity to construct tpy-functionalized polymers with controllable molecular weights and low polydispersities. Through the spontaneous heteroleptic complexation, a variety of metallo-supramolecular diblock copolymers with tunable block ratios can be easily constructed. MDPI 2020-11-29 /pmc/articles/PMC7760035/ /pubmed/33260312 http://dx.doi.org/10.3390/polym12122842 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tu, Tsung-Han
Chan, Yi-Tsu
Synthesis of Terpyridine End-Modified Polystyrenes through ATRP for Facile Construction of Metallo-Supramolecular P3HT-b-PS Diblock Copolymers
title Synthesis of Terpyridine End-Modified Polystyrenes through ATRP for Facile Construction of Metallo-Supramolecular P3HT-b-PS Diblock Copolymers
title_full Synthesis of Terpyridine End-Modified Polystyrenes through ATRP for Facile Construction of Metallo-Supramolecular P3HT-b-PS Diblock Copolymers
title_fullStr Synthesis of Terpyridine End-Modified Polystyrenes through ATRP for Facile Construction of Metallo-Supramolecular P3HT-b-PS Diblock Copolymers
title_full_unstemmed Synthesis of Terpyridine End-Modified Polystyrenes through ATRP for Facile Construction of Metallo-Supramolecular P3HT-b-PS Diblock Copolymers
title_short Synthesis of Terpyridine End-Modified Polystyrenes through ATRP for Facile Construction of Metallo-Supramolecular P3HT-b-PS Diblock Copolymers
title_sort synthesis of terpyridine end-modified polystyrenes through atrp for facile construction of metallo-supramolecular p3ht-b-ps diblock copolymers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760035/
https://www.ncbi.nlm.nih.gov/pubmed/33260312
http://dx.doi.org/10.3390/polym12122842
work_keys_str_mv AT tutsunghan synthesisofterpyridineendmodifiedpolystyrenesthroughatrpforfacileconstructionofmetallosupramolecularp3htbpsdiblockcopolymers
AT chanyitsu synthesisofterpyridineendmodifiedpolystyrenesthroughatrpforfacileconstructionofmetallosupramolecularp3htbpsdiblockcopolymers