Cargando…
Analysis of Mechanical and Wettability Properties of Natural Fiber-Reinforced Epoxy Hybrid Composites
Natural fibers have many advantages over synthetic fibers due to their lightness, low cost, biodegradability, and abundance in nature. The demand for natural fiber hybrid composites in various applications has increased recently, because of its promising mechanical properties. In this research work,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760148/ https://www.ncbi.nlm.nih.gov/pubmed/33261200 http://dx.doi.org/10.3390/polym12122827 |
Sumario: | Natural fibers have many advantages over synthetic fibers due to their lightness, low cost, biodegradability, and abundance in nature. The demand for natural fiber hybrid composites in various applications has increased recently, because of its promising mechanical properties. In this research work, the mechanical and wettability properties of reinforced natural fiber epoxy resin hybrid composites were investigated. The main aim of this research work is the fabrication of hybrid composites and exploit its importance over individual fiber composites. The composites were fabricated based on the rule of hybridization mixture (0.4 wf) of two fibers using sets of either hemp and flax or banana and pineapple, each set with 40 wt%, as well as four single fiber composites, 40 wt% each, as reinforcement and epoxy resin as matrix material. A total of two sets (hemp/flax and banana/pineapple) of hybrid composites were fabricated by using a hand layup technique. One set as 40H/0F, 25H/15F, 20H/20F, 15H/25F, 0H/40F, and the second one as 40B/0P, 25B/15P, 20B/20P, 15B/25P, 0B/40P weight fraction ratios. The fabricated composites were allowed for testing to examine its mechanical, wettability, and moisture properties. It has been observed that, in both cases, hybrid composites showed improved mechanical properties when compared to the individual fiber composites. The wettability test was carried out by using the contact angle measurement technique. All composites in both cases, hybrid or single showed contact angle less than 90°, which is associated with the composite hydrophilic surface properties. The moisture analysis stated that all the composites responded for moisture absorption up to 96 h and then remained constant in both cases. Hybrid composites absorbed less moisture than individual fiber composites. |
---|