Cargando…
Artificial Intelligence Tools for Refining Lung Cancer Screening
Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for ear...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760157/ https://www.ncbi.nlm.nih.gov/pubmed/33261057 http://dx.doi.org/10.3390/jcm9123860 |
_version_ | 1783627266854486016 |
---|---|
author | Espinoza, J. Luis Dong, Le Thanh |
author_facet | Espinoza, J. Luis Dong, Le Thanh |
author_sort | Espinoza, J. Luis |
collection | PubMed |
description | Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade, and based on the results of large clinical trials, lung cancer screening programs using low-dose computer tomography (LDCT) in high-risk individuals have been implemented in some clinical settings, however, this method has various limitations, especially a high false-positive rate which eventually results in a number of unnecessary diagnostic and therapeutic interventions among the screened subjects. By using complex algorithms and software, artificial intelligence (AI) is capable to emulate human cognition in the analysis, interpretation, and comprehension of complicated data and currently, it is being successfully applied in various healthcare settings. Taking advantage of the ability of AI to quantify information from images, and its superior capability in recognizing complex patterns in images compared to humans, AI has the potential to aid clinicians in the interpretation of LDCT images obtained in the setting of lung cancer screening. In the last decade, several AI models aimed to improve lung cancer detection have been reported. Some algorithms performed equal or even outperformed experienced radiologists in distinguishing benign from malign lung nodules and some of those models improved diagnostic accuracy and decreased the false-positive rate. Here, we discuss recent publications in which AI algorithms are utilized to assess chest computer tomography (CT) scans imaging obtaining in the setting of lung cancer screening. |
format | Online Article Text |
id | pubmed-7760157 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77601572020-12-26 Artificial Intelligence Tools for Refining Lung Cancer Screening Espinoza, J. Luis Dong, Le Thanh J Clin Med Review Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade, and based on the results of large clinical trials, lung cancer screening programs using low-dose computer tomography (LDCT) in high-risk individuals have been implemented in some clinical settings, however, this method has various limitations, especially a high false-positive rate which eventually results in a number of unnecessary diagnostic and therapeutic interventions among the screened subjects. By using complex algorithms and software, artificial intelligence (AI) is capable to emulate human cognition in the analysis, interpretation, and comprehension of complicated data and currently, it is being successfully applied in various healthcare settings. Taking advantage of the ability of AI to quantify information from images, and its superior capability in recognizing complex patterns in images compared to humans, AI has the potential to aid clinicians in the interpretation of LDCT images obtained in the setting of lung cancer screening. In the last decade, several AI models aimed to improve lung cancer detection have been reported. Some algorithms performed equal or even outperformed experienced radiologists in distinguishing benign from malign lung nodules and some of those models improved diagnostic accuracy and decreased the false-positive rate. Here, we discuss recent publications in which AI algorithms are utilized to assess chest computer tomography (CT) scans imaging obtaining in the setting of lung cancer screening. MDPI 2020-11-27 /pmc/articles/PMC7760157/ /pubmed/33261057 http://dx.doi.org/10.3390/jcm9123860 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Espinoza, J. Luis Dong, Le Thanh Artificial Intelligence Tools for Refining Lung Cancer Screening |
title | Artificial Intelligence Tools for Refining Lung Cancer Screening |
title_full | Artificial Intelligence Tools for Refining Lung Cancer Screening |
title_fullStr | Artificial Intelligence Tools for Refining Lung Cancer Screening |
title_full_unstemmed | Artificial Intelligence Tools for Refining Lung Cancer Screening |
title_short | Artificial Intelligence Tools for Refining Lung Cancer Screening |
title_sort | artificial intelligence tools for refining lung cancer screening |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760157/ https://www.ncbi.nlm.nih.gov/pubmed/33261057 http://dx.doi.org/10.3390/jcm9123860 |
work_keys_str_mv | AT espinozajluis artificialintelligencetoolsforrefininglungcancerscreening AT donglethanh artificialintelligencetoolsforrefininglungcancerscreening |