Cargando…
Data-Driven Model Reduction for Stochastic Burgers Equations
We present a class of efficient parametric closure models for 1D stochastic Burgers equations. Casting it as statistical learning of the flow map, we derive the parametric form by representing the unresolved high wavenumber Fourier modes as functionals of the resolved variable’s trajectory. The redu...
Autor principal: | Lu, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760244/ https://www.ncbi.nlm.nih.gov/pubmed/33266339 http://dx.doi.org/10.3390/e22121360 |
Ejemplares similares
-
Reduction operators of Burgers equation
por: Pocheketa, Oleksandr A., et al.
Publicado: (2013) -
Dynamic multiscaling in stochastically forced Burgers turbulence
por: De, Sadhitro, et al.
Publicado: (2023) -
Nonlinear stochastic pdes: hydrodynamic limit and burgers’ turbulence
por: Funaki, Tadahisa, et al.
Publicado: (1996) -
Analytical and Numerical Treatments of Conservative Diffusions and the Burgers Equation
por: Prodanov, Dimiter
Publicado: (2018) -
The Burgers equation with a non-gaussian random force
por: Benth, F E, et al.
Publicado: (1995)