Cargando…
Proximal Methods for Plant Stress Detection Using Optical Sensors and Machine Learning
Plant stresses have been monitored using the imaging or spectrometry of plant leaves in the visible (red-green-blue or RGB), near-infrared (NIR), infrared (IR), and ultraviolet (UV) wavebands, often augmented by fluorescence imaging or fluorescence spectrometry. Imaging at multiple specific waveleng...
Autores principales: | Zubler, Alanna V., Yoon, Jeong-Yeol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760370/ https://www.ncbi.nlm.nih.gov/pubmed/33260412 http://dx.doi.org/10.3390/bios10120193 |
Ejemplares similares
-
Paper-Based Multiplex Sensors for the Optical Detection of Plant Stress
por: Zedler, Marie, et al.
Publicado: (2023) -
Automated detection of the yellow‐legged hornet (Vespa velutina) using an optical sensor with machine learning
por: Herrera, Cayetano, et al.
Publicado: (2022) -
An Integrated Nanocomposite Proximity Sensor: Machine Learning-Based Optimization, Simulation, and Experiment
por: Moheimani, Reza, et al.
Publicado: (2022) -
Using Machine Learning Methods to Provision Virtual Sensors in Sensor-Cloud
por: Zhang, Ming-Zheng, et al.
Publicado: (2020) -
Machine Learning Approaches in Brillouin Distributed Fiber Optic Sensors
por: Karapanagiotis, Christos, et al.
Publicado: (2023)