Cargando…
Application of ICEEMDAN Energy Entropy and AFSA-SVM for Fault Diagnosis of Hoist Sheave Bearing
The mine hoist sheave bearing is a large heavy-duty bearing, located in a derrick of tens of meters. Aiming at the difficulty of sheave bearing fault diagnosis, a combined fault-diagnosis method based on the improved complete ensemble EMD (ICEEMDAN) energy entropy and support vector machine (SVM) op...
Autores principales: | Kou, Ziming, Yang, Fen, Wu, Juan, Li, Tengyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760510/ https://www.ncbi.nlm.nih.gov/pubmed/33266531 http://dx.doi.org/10.3390/e22121347 |
Ejemplares similares
-
Application of Mutual Information-Sample Entropy Based MED-ICEEMDAN De-Noising Scheme for Weak Fault Diagnosis of Hoist Bearing
por: Yang, Fen, et al.
Publicado: (2018) -
Application of Adaptive MOMEDA with Iterative Autocorrelation to Enhance Weak Features of Hoist Bearings
por: Li, Tengyu, et al.
Publicado: (2021) -
Rope Tension Fault Diagnosis in Hoisting Systems Based on Vibration Signals Using EEMD, Improved Permutation Entropy, and PSO-SVM
por: Xue, Shaohua, et al.
Publicado: (2020) -
Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM
por: Zhou, Junbo, et al.
Publicado: (2022) -
Fault Diagnosis for Rolling Bearings Based on Fine-Sorted Dispersion Entropy and SVM Optimized with Mutation SCA-PSO
por: Fu, Wenlong, et al.
Publicado: (2019)