Cargando…

TORC2-Dependent Ypk1-Mediated Phosphorylation of Lam2/Ltc4 Disrupts Its Association with the β-Propeller Protein Laf1 at Endoplasmic Reticulum-Plasma Membrane Contact Sites in the Yeast Saccharomyces cerevisiae

Membrane-tethered sterol-binding Lam/Ltc proteins localize at junctions between the endoplasmic reticulum (ER) membrane and other organelles. Two of the six family members—Lam2/Ltc4 (initially Ysp2) and paralog Lam4/Ltc3—localize to ER-plasma membrane (PM) contact sites (CSs) and mediate retrograde...

Descripción completa

Detalles Bibliográficos
Autores principales: Topolska, Magdalena, Roelants, Françoise M., Si, Edward P., Thorner, Jeremy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760575/
https://www.ncbi.nlm.nih.gov/pubmed/33255682
http://dx.doi.org/10.3390/biom10121598
_version_ 1783627364782047232
author Topolska, Magdalena
Roelants, Françoise M.
Si, Edward P.
Thorner, Jeremy
author_facet Topolska, Magdalena
Roelants, Françoise M.
Si, Edward P.
Thorner, Jeremy
author_sort Topolska, Magdalena
collection PubMed
description Membrane-tethered sterol-binding Lam/Ltc proteins localize at junctions between the endoplasmic reticulum (ER) membrane and other organelles. Two of the six family members—Lam2/Ltc4 (initially Ysp2) and paralog Lam4/Ltc3—localize to ER-plasma membrane (PM) contact sites (CSs) and mediate retrograde ergosterol transport from the PM to the ER. Our prior work demonstrated that Lam2 and Lam4 are substrates of TORC2-regulated protein kinase Ypk1, that Ypk1-mediated phosphorylation inhibits their function in retrograde sterol transport, and that PM sterol retention bolsters cell survival under stressful conditions. At ER-PM CSs, Lam2 and Lam4 associate with Laf1/Ymr102c and Dgr2/Ykl121w (paralogous WD40 repeat-containing proteins) that reportedly bind sterol. Using fluorescent tags, we found that Lam2 and Lam4 remain at ER-PM CSs when Laf1 and Dgr2 are absent, whereas neither Laf1 nor Dgr2 remain at ER-PM CSs when Lam2 and Lam4 are absent. Loss of Laf1 (but not Dgr2) impedes retrograde ergosterol transport, and a laf1∆ mutation does not exacerbate the transport defect of lam2∆ lam4∆ cells, indicating a shared function. Lam2 and Lam4 bind Laf1 and Dgr2 in vitro in a pull-down assay, and the PH domain in Lam2 hinders its interaction with Laf1. Lam2 phosphorylated by Ypk1, and Lam2 with phosphomimetic (Glu) replacements at its Ypk1 sites, exhibited a marked reduction in Laf1 binding. Thus, phosphorylation prevents Lam2 interaction with Laf1 at ER-PM CSs, providing a mechanism by which Ypk1 action inhibits retrograde sterol transport.
format Online
Article
Text
id pubmed-7760575
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77605752020-12-26 TORC2-Dependent Ypk1-Mediated Phosphorylation of Lam2/Ltc4 Disrupts Its Association with the β-Propeller Protein Laf1 at Endoplasmic Reticulum-Plasma Membrane Contact Sites in the Yeast Saccharomyces cerevisiae Topolska, Magdalena Roelants, Françoise M. Si, Edward P. Thorner, Jeremy Biomolecules Article Membrane-tethered sterol-binding Lam/Ltc proteins localize at junctions between the endoplasmic reticulum (ER) membrane and other organelles. Two of the six family members—Lam2/Ltc4 (initially Ysp2) and paralog Lam4/Ltc3—localize to ER-plasma membrane (PM) contact sites (CSs) and mediate retrograde ergosterol transport from the PM to the ER. Our prior work demonstrated that Lam2 and Lam4 are substrates of TORC2-regulated protein kinase Ypk1, that Ypk1-mediated phosphorylation inhibits their function in retrograde sterol transport, and that PM sterol retention bolsters cell survival under stressful conditions. At ER-PM CSs, Lam2 and Lam4 associate with Laf1/Ymr102c and Dgr2/Ykl121w (paralogous WD40 repeat-containing proteins) that reportedly bind sterol. Using fluorescent tags, we found that Lam2 and Lam4 remain at ER-PM CSs when Laf1 and Dgr2 are absent, whereas neither Laf1 nor Dgr2 remain at ER-PM CSs when Lam2 and Lam4 are absent. Loss of Laf1 (but not Dgr2) impedes retrograde ergosterol transport, and a laf1∆ mutation does not exacerbate the transport defect of lam2∆ lam4∆ cells, indicating a shared function. Lam2 and Lam4 bind Laf1 and Dgr2 in vitro in a pull-down assay, and the PH domain in Lam2 hinders its interaction with Laf1. Lam2 phosphorylated by Ypk1, and Lam2 with phosphomimetic (Glu) replacements at its Ypk1 sites, exhibited a marked reduction in Laf1 binding. Thus, phosphorylation prevents Lam2 interaction with Laf1 at ER-PM CSs, providing a mechanism by which Ypk1 action inhibits retrograde sterol transport. MDPI 2020-11-25 /pmc/articles/PMC7760575/ /pubmed/33255682 http://dx.doi.org/10.3390/biom10121598 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Topolska, Magdalena
Roelants, Françoise M.
Si, Edward P.
Thorner, Jeremy
TORC2-Dependent Ypk1-Mediated Phosphorylation of Lam2/Ltc4 Disrupts Its Association with the β-Propeller Protein Laf1 at Endoplasmic Reticulum-Plasma Membrane Contact Sites in the Yeast Saccharomyces cerevisiae
title TORC2-Dependent Ypk1-Mediated Phosphorylation of Lam2/Ltc4 Disrupts Its Association with the β-Propeller Protein Laf1 at Endoplasmic Reticulum-Plasma Membrane Contact Sites in the Yeast Saccharomyces cerevisiae
title_full TORC2-Dependent Ypk1-Mediated Phosphorylation of Lam2/Ltc4 Disrupts Its Association with the β-Propeller Protein Laf1 at Endoplasmic Reticulum-Plasma Membrane Contact Sites in the Yeast Saccharomyces cerevisiae
title_fullStr TORC2-Dependent Ypk1-Mediated Phosphorylation of Lam2/Ltc4 Disrupts Its Association with the β-Propeller Protein Laf1 at Endoplasmic Reticulum-Plasma Membrane Contact Sites in the Yeast Saccharomyces cerevisiae
title_full_unstemmed TORC2-Dependent Ypk1-Mediated Phosphorylation of Lam2/Ltc4 Disrupts Its Association with the β-Propeller Protein Laf1 at Endoplasmic Reticulum-Plasma Membrane Contact Sites in the Yeast Saccharomyces cerevisiae
title_short TORC2-Dependent Ypk1-Mediated Phosphorylation of Lam2/Ltc4 Disrupts Its Association with the β-Propeller Protein Laf1 at Endoplasmic Reticulum-Plasma Membrane Contact Sites in the Yeast Saccharomyces cerevisiae
title_sort torc2-dependent ypk1-mediated phosphorylation of lam2/ltc4 disrupts its association with the β-propeller protein laf1 at endoplasmic reticulum-plasma membrane contact sites in the yeast saccharomyces cerevisiae
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760575/
https://www.ncbi.nlm.nih.gov/pubmed/33255682
http://dx.doi.org/10.3390/biom10121598
work_keys_str_mv AT topolskamagdalena torc2dependentypk1mediatedphosphorylationoflam2ltc4disruptsitsassociationwiththebpropellerproteinlaf1atendoplasmicreticulumplasmamembranecontactsitesintheyeastsaccharomycescerevisiae
AT roelantsfrancoisem torc2dependentypk1mediatedphosphorylationoflam2ltc4disruptsitsassociationwiththebpropellerproteinlaf1atendoplasmicreticulumplasmamembranecontactsitesintheyeastsaccharomycescerevisiae
AT siedwardp torc2dependentypk1mediatedphosphorylationoflam2ltc4disruptsitsassociationwiththebpropellerproteinlaf1atendoplasmicreticulumplasmamembranecontactsitesintheyeastsaccharomycescerevisiae
AT thornerjeremy torc2dependentypk1mediatedphosphorylationoflam2ltc4disruptsitsassociationwiththebpropellerproteinlaf1atendoplasmicreticulumplasmamembranecontactsitesintheyeastsaccharomycescerevisiae