Cargando…

Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics

The polymer electrolyte based on Dx:Cs:Mg(CH(3)COO)(2):Ni with three different glycerol concentrations have been prepared. The impedance study has verified that the electrolyte with 42 wt.% of glycerol (A3) has the highest ionic conductivity of 7.71 × 10(−6) S cm(−1) at room temperature. The ionic c...

Descripción completa

Detalles Bibliográficos
Autores principales: Asnawi, Ahmad S. F. M., Aziz, Shujahadeen B., Saeed, Salah R., Yusof, Yuhanees M., Abdulwahid, Rebar T., Al-Zangana, Shakhawan, Karim, Wrya O., Kadir, Mohd. F. Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760615/
https://www.ncbi.nlm.nih.gov/pubmed/33276495
http://dx.doi.org/10.3390/membranes10120389
_version_ 1783627374784413696
author Asnawi, Ahmad S. F. M.
Aziz, Shujahadeen B.
Saeed, Salah R.
Yusof, Yuhanees M.
Abdulwahid, Rebar T.
Al-Zangana, Shakhawan
Karim, Wrya O.
Kadir, Mohd. F. Z.
author_facet Asnawi, Ahmad S. F. M.
Aziz, Shujahadeen B.
Saeed, Salah R.
Yusof, Yuhanees M.
Abdulwahid, Rebar T.
Al-Zangana, Shakhawan
Karim, Wrya O.
Kadir, Mohd. F. Z.
author_sort Asnawi, Ahmad S. F. M.
collection PubMed
description The polymer electrolyte based on Dx:Cs:Mg(CH(3)COO)(2):Ni with three different glycerol concentrations have been prepared. The impedance study has verified that the electrolyte with 42 wt.% of glycerol (A3) has the highest ionic conductivity of 7.71 × 10(−6) S cm(−1) at room temperature. The ionic conductivity is found to be influenced by the transport parameters. From the dielectric analysis, it was shown that the electrolytes in this system obeyed the non-Debye behavior. The A3 electrolyte exhibited a dominancy of ions (t(ion) > t(e)) with a breakdown voltage of 2.08 V. The fabricated electrochemical double layer capacitor (EDLC) achieved the specific capacitance values of 24.46 F/g and 39.68 F/g via the cyclic voltammetry (CV) curve and the charge–discharge profile, respectively. The other significant parameters to evaluate the performance of EDLC have been determined, such as internal resistance (186.80 to 202.27 [Formula: see text]) energy density (4.46 Wh/kg), power density (500.58 to 558.57 W/kg) and efficiency (92.88%).
format Online
Article
Text
id pubmed-7760615
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77606152020-12-26 Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics Asnawi, Ahmad S. F. M. Aziz, Shujahadeen B. Saeed, Salah R. Yusof, Yuhanees M. Abdulwahid, Rebar T. Al-Zangana, Shakhawan Karim, Wrya O. Kadir, Mohd. F. Z. Membranes (Basel) Article The polymer electrolyte based on Dx:Cs:Mg(CH(3)COO)(2):Ni with three different glycerol concentrations have been prepared. The impedance study has verified that the electrolyte with 42 wt.% of glycerol (A3) has the highest ionic conductivity of 7.71 × 10(−6) S cm(−1) at room temperature. The ionic conductivity is found to be influenced by the transport parameters. From the dielectric analysis, it was shown that the electrolytes in this system obeyed the non-Debye behavior. The A3 electrolyte exhibited a dominancy of ions (t(ion) > t(e)) with a breakdown voltage of 2.08 V. The fabricated electrochemical double layer capacitor (EDLC) achieved the specific capacitance values of 24.46 F/g and 39.68 F/g via the cyclic voltammetry (CV) curve and the charge–discharge profile, respectively. The other significant parameters to evaluate the performance of EDLC have been determined, such as internal resistance (186.80 to 202.27 [Formula: see text]) energy density (4.46 Wh/kg), power density (500.58 to 558.57 W/kg) and efficiency (92.88%). MDPI 2020-12-02 /pmc/articles/PMC7760615/ /pubmed/33276495 http://dx.doi.org/10.3390/membranes10120389 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Asnawi, Ahmad S. F. M.
Aziz, Shujahadeen B.
Saeed, Salah R.
Yusof, Yuhanees M.
Abdulwahid, Rebar T.
Al-Zangana, Shakhawan
Karim, Wrya O.
Kadir, Mohd. F. Z.
Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics
title Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics
title_full Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics
title_fullStr Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics
title_full_unstemmed Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics
title_short Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics
title_sort solid-state edlc device based on magnesium ion-conducting biopolymer composite membrane electrolytes: impedance, circuit modeling, dielectric properties and electrochemical characteristics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760615/
https://www.ncbi.nlm.nih.gov/pubmed/33276495
http://dx.doi.org/10.3390/membranes10120389
work_keys_str_mv AT asnawiahmadsfm solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics
AT azizshujahadeenb solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics
AT saeedsalahr solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics
AT yusofyuhaneesm solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics
AT abdulwahidrebart solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics
AT alzanganashakhawan solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics
AT karimwryao solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics
AT kadirmohdfz solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics