Cargando…
Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics
The polymer electrolyte based on Dx:Cs:Mg(CH(3)COO)(2):Ni with three different glycerol concentrations have been prepared. The impedance study has verified that the electrolyte with 42 wt.% of glycerol (A3) has the highest ionic conductivity of 7.71 × 10(−6) S cm(−1) at room temperature. The ionic c...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760615/ https://www.ncbi.nlm.nih.gov/pubmed/33276495 http://dx.doi.org/10.3390/membranes10120389 |
_version_ | 1783627374784413696 |
---|---|
author | Asnawi, Ahmad S. F. M. Aziz, Shujahadeen B. Saeed, Salah R. Yusof, Yuhanees M. Abdulwahid, Rebar T. Al-Zangana, Shakhawan Karim, Wrya O. Kadir, Mohd. F. Z. |
author_facet | Asnawi, Ahmad S. F. M. Aziz, Shujahadeen B. Saeed, Salah R. Yusof, Yuhanees M. Abdulwahid, Rebar T. Al-Zangana, Shakhawan Karim, Wrya O. Kadir, Mohd. F. Z. |
author_sort | Asnawi, Ahmad S. F. M. |
collection | PubMed |
description | The polymer electrolyte based on Dx:Cs:Mg(CH(3)COO)(2):Ni with three different glycerol concentrations have been prepared. The impedance study has verified that the electrolyte with 42 wt.% of glycerol (A3) has the highest ionic conductivity of 7.71 × 10(−6) S cm(−1) at room temperature. The ionic conductivity is found to be influenced by the transport parameters. From the dielectric analysis, it was shown that the electrolytes in this system obeyed the non-Debye behavior. The A3 electrolyte exhibited a dominancy of ions (t(ion) > t(e)) with a breakdown voltage of 2.08 V. The fabricated electrochemical double layer capacitor (EDLC) achieved the specific capacitance values of 24.46 F/g and 39.68 F/g via the cyclic voltammetry (CV) curve and the charge–discharge profile, respectively. The other significant parameters to evaluate the performance of EDLC have been determined, such as internal resistance (186.80 to 202.27 [Formula: see text]) energy density (4.46 Wh/kg), power density (500.58 to 558.57 W/kg) and efficiency (92.88%). |
format | Online Article Text |
id | pubmed-7760615 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77606152020-12-26 Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics Asnawi, Ahmad S. F. M. Aziz, Shujahadeen B. Saeed, Salah R. Yusof, Yuhanees M. Abdulwahid, Rebar T. Al-Zangana, Shakhawan Karim, Wrya O. Kadir, Mohd. F. Z. Membranes (Basel) Article The polymer electrolyte based on Dx:Cs:Mg(CH(3)COO)(2):Ni with three different glycerol concentrations have been prepared. The impedance study has verified that the electrolyte with 42 wt.% of glycerol (A3) has the highest ionic conductivity of 7.71 × 10(−6) S cm(−1) at room temperature. The ionic conductivity is found to be influenced by the transport parameters. From the dielectric analysis, it was shown that the electrolytes in this system obeyed the non-Debye behavior. The A3 electrolyte exhibited a dominancy of ions (t(ion) > t(e)) with a breakdown voltage of 2.08 V. The fabricated electrochemical double layer capacitor (EDLC) achieved the specific capacitance values of 24.46 F/g and 39.68 F/g via the cyclic voltammetry (CV) curve and the charge–discharge profile, respectively. The other significant parameters to evaluate the performance of EDLC have been determined, such as internal resistance (186.80 to 202.27 [Formula: see text]) energy density (4.46 Wh/kg), power density (500.58 to 558.57 W/kg) and efficiency (92.88%). MDPI 2020-12-02 /pmc/articles/PMC7760615/ /pubmed/33276495 http://dx.doi.org/10.3390/membranes10120389 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Asnawi, Ahmad S. F. M. Aziz, Shujahadeen B. Saeed, Salah R. Yusof, Yuhanees M. Abdulwahid, Rebar T. Al-Zangana, Shakhawan Karim, Wrya O. Kadir, Mohd. F. Z. Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics |
title | Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics |
title_full | Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics |
title_fullStr | Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics |
title_full_unstemmed | Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics |
title_short | Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics |
title_sort | solid-state edlc device based on magnesium ion-conducting biopolymer composite membrane electrolytes: impedance, circuit modeling, dielectric properties and electrochemical characteristics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760615/ https://www.ncbi.nlm.nih.gov/pubmed/33276495 http://dx.doi.org/10.3390/membranes10120389 |
work_keys_str_mv | AT asnawiahmadsfm solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics AT azizshujahadeenb solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics AT saeedsalahr solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics AT yusofyuhaneesm solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics AT abdulwahidrebart solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics AT alzanganashakhawan solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics AT karimwryao solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics AT kadirmohdfz solidstateedlcdevicebasedonmagnesiumionconductingbiopolymercompositemembraneelectrolytesimpedancecircuitmodelingdielectricpropertiesandelectrochemicalcharacteristics |