Cargando…
Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in Thraustochytriidae sp.
The molecular mechanism that contributes to nitrogen source dependent omega-3 polyunsaturated fatty acid (n-3 PUFA) synthesis in marine oleaginous protists Thraustochytriidae sp., was explored in this study. The fatty acid (FA) synthesis was significantly influenced by the supplement of various leve...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760700/ https://www.ncbi.nlm.nih.gov/pubmed/33271856 http://dx.doi.org/10.3390/md18120612 |
_version_ | 1783627395054436352 |
---|---|
author | Li, Siting Hu, Zhangli Yang, Xuewei Li, Yan |
author_facet | Li, Siting Hu, Zhangli Yang, Xuewei Li, Yan |
author_sort | Li, Siting |
collection | PubMed |
description | The molecular mechanism that contributes to nitrogen source dependent omega-3 polyunsaturated fatty acid (n-3 PUFA) synthesis in marine oleaginous protists Thraustochytriidae sp., was explored in this study. The fatty acid (FA) synthesis was significantly influenced by the supplement of various levels of sodium nitrate (SN) (1–50 mM) or urea (1–50 mM). Compared with SN (50 mM) cultivation, cells from urea (50 mM) cultivation accumulated 1.16-fold more n-3 PUFAs (49.49% docosahexaenoic acid (DHA) (w/w, of total FAs) and 5.28% docosapentaenoic acid (DPA) (w/w, of total FAs)). Strikingly higher quantities of short chain FAs (<18 carbons) (52.22-fold of that in urea cultivation) were produced from SN cultivation. Ten candidate reference genes (RGs) were screened by using four statistical methods (geNorm, NormFinder, Bestkeeper and RefFinder). MFT (Mitochondrial folate transporter) and NUC (Nucleolin) were determined as the stable RGs to normalize the RT-qPCR (real-time quantitative polymerase chain reaction) data of essential genes related to n-3 PUFAs-synthesis. Our results elucidated that the gene transcripts of delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA hydratase, fatty acid elongase 3, long-chain fatty acid acyl-CoA ligase, and acetyl-CoA carboxylase were up-regulated under urea cultivation, contributing to the extension and unsaturated bond formation. These findings indicated that regulation of the specific genes through nitrogen source could greatly stimulate n-3 PUFA production in Thraustochytriidae sp. |
format | Online Article Text |
id | pubmed-7760700 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77607002020-12-26 Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in Thraustochytriidae sp. Li, Siting Hu, Zhangli Yang, Xuewei Li, Yan Mar Drugs Article The molecular mechanism that contributes to nitrogen source dependent omega-3 polyunsaturated fatty acid (n-3 PUFA) synthesis in marine oleaginous protists Thraustochytriidae sp., was explored in this study. The fatty acid (FA) synthesis was significantly influenced by the supplement of various levels of sodium nitrate (SN) (1–50 mM) or urea (1–50 mM). Compared with SN (50 mM) cultivation, cells from urea (50 mM) cultivation accumulated 1.16-fold more n-3 PUFAs (49.49% docosahexaenoic acid (DHA) (w/w, of total FAs) and 5.28% docosapentaenoic acid (DPA) (w/w, of total FAs)). Strikingly higher quantities of short chain FAs (<18 carbons) (52.22-fold of that in urea cultivation) were produced from SN cultivation. Ten candidate reference genes (RGs) were screened by using four statistical methods (geNorm, NormFinder, Bestkeeper and RefFinder). MFT (Mitochondrial folate transporter) and NUC (Nucleolin) were determined as the stable RGs to normalize the RT-qPCR (real-time quantitative polymerase chain reaction) data of essential genes related to n-3 PUFAs-synthesis. Our results elucidated that the gene transcripts of delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA hydratase, fatty acid elongase 3, long-chain fatty acid acyl-CoA ligase, and acetyl-CoA carboxylase were up-regulated under urea cultivation, contributing to the extension and unsaturated bond formation. These findings indicated that regulation of the specific genes through nitrogen source could greatly stimulate n-3 PUFA production in Thraustochytriidae sp. MDPI 2020-12-01 /pmc/articles/PMC7760700/ /pubmed/33271856 http://dx.doi.org/10.3390/md18120612 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Siting Hu, Zhangli Yang, Xuewei Li, Yan Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in Thraustochytriidae sp. |
title | Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in Thraustochytriidae sp. |
title_full | Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in Thraustochytriidae sp. |
title_fullStr | Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in Thraustochytriidae sp. |
title_full_unstemmed | Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in Thraustochytriidae sp. |
title_short | Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in Thraustochytriidae sp. |
title_sort | effect of nitrogen sources on omega-3 polyunsaturated fatty acid biosynthesis and gene expression in thraustochytriidae sp. |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760700/ https://www.ncbi.nlm.nih.gov/pubmed/33271856 http://dx.doi.org/10.3390/md18120612 |
work_keys_str_mv | AT lisiting effectofnitrogensourcesonomega3polyunsaturatedfattyacidbiosynthesisandgeneexpressioninthraustochytriidaesp AT huzhangli effectofnitrogensourcesonomega3polyunsaturatedfattyacidbiosynthesisandgeneexpressioninthraustochytriidaesp AT yangxuewei effectofnitrogensourcesonomega3polyunsaturatedfattyacidbiosynthesisandgeneexpressioninthraustochytriidaesp AT liyan effectofnitrogensourcesonomega3polyunsaturatedfattyacidbiosynthesisandgeneexpressioninthraustochytriidaesp |