Cargando…
Green Synthesis of Silver Nanoparticles Using Astragalus tribuloides Delile. Root Extract: Characterization, Antioxidant, Antibacterial, and Anti-Inflammatory Activities
Today, the green synthesis of metal nanoparticles is a promising strategy in material science and nanotechnology. In this research, silver nanoparticles (AgNPs) were synthesized through the high-efficient, cost-effective green and facile process, using the Astragalus tribuloides Delile. root extract...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760762/ https://www.ncbi.nlm.nih.gov/pubmed/33260441 http://dx.doi.org/10.3390/nano10122383 |
_version_ | 1783627409882349568 |
---|---|
author | Sharifi-Rad, Majid Pohl, Pawel Epifano, Francesco Álvarez-Suarez, José M. |
author_facet | Sharifi-Rad, Majid Pohl, Pawel Epifano, Francesco Álvarez-Suarez, José M. |
author_sort | Sharifi-Rad, Majid |
collection | PubMed |
description | Today, the green synthesis of metal nanoparticles is a promising strategy in material science and nanotechnology. In this research, silver nanoparticles (AgNPs) were synthesized through the high-efficient, cost-effective green and facile process, using the Astragalus tribuloides Delile. root extract as a bioreduction and capping agent at room temperature. UV–Vis spectroscopy was applied for the investigation of the reaction proceedings. To characterize the greenly synthesized AgNPs, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), and transmission electron microscopy (TEM) analyses were utilized. In addition, the total phenolics and flavonoids contents, antioxidant, antibacterial, and anti-inflammatory activities of the greenly synthesized AgNPs and the A. tribuloides root extract were evaluated. The results indicated that the AgNPs had spherical morphology and crystalline structure with the average size of 34.2 ± 8.0 nm. The total phenolics and flavonoids contents of the greenly synthesized AgNPs were lower than those for the A. tribuloides root extract. The resultant AgNPs exhibited the appropriate antioxidant activity (64%) as compared to that for the A. tribuloides root extract (47%). The antibacterial test approved the higher bactericidal activity of the resulting AgNPs on the Gram-positive and Gram-negative bacteria in comparison to the A. tribuloides root extract. Considering the anti-inflammatory activity, the greenly synthesized AgNPs showed a stranger effect than the A. tribuloides root extract (82% versus 69% at 500 μg/mL). Generally, the AgNPs that were fabricated by using the A. tribuloides root extract had appropriate antioxidant, antibacterial, and anti-inflammatory activities and, therefore, can be considered as a promising candidate for various biomedical applications. |
format | Online Article Text |
id | pubmed-7760762 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77607622020-12-26 Green Synthesis of Silver Nanoparticles Using Astragalus tribuloides Delile. Root Extract: Characterization, Antioxidant, Antibacterial, and Anti-Inflammatory Activities Sharifi-Rad, Majid Pohl, Pawel Epifano, Francesco Álvarez-Suarez, José M. Nanomaterials (Basel) Article Today, the green synthesis of metal nanoparticles is a promising strategy in material science and nanotechnology. In this research, silver nanoparticles (AgNPs) were synthesized through the high-efficient, cost-effective green and facile process, using the Astragalus tribuloides Delile. root extract as a bioreduction and capping agent at room temperature. UV–Vis spectroscopy was applied for the investigation of the reaction proceedings. To characterize the greenly synthesized AgNPs, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), and transmission electron microscopy (TEM) analyses were utilized. In addition, the total phenolics and flavonoids contents, antioxidant, antibacterial, and anti-inflammatory activities of the greenly synthesized AgNPs and the A. tribuloides root extract were evaluated. The results indicated that the AgNPs had spherical morphology and crystalline structure with the average size of 34.2 ± 8.0 nm. The total phenolics and flavonoids contents of the greenly synthesized AgNPs were lower than those for the A. tribuloides root extract. The resultant AgNPs exhibited the appropriate antioxidant activity (64%) as compared to that for the A. tribuloides root extract (47%). The antibacterial test approved the higher bactericidal activity of the resulting AgNPs on the Gram-positive and Gram-negative bacteria in comparison to the A. tribuloides root extract. Considering the anti-inflammatory activity, the greenly synthesized AgNPs showed a stranger effect than the A. tribuloides root extract (82% versus 69% at 500 μg/mL). Generally, the AgNPs that were fabricated by using the A. tribuloides root extract had appropriate antioxidant, antibacterial, and anti-inflammatory activities and, therefore, can be considered as a promising candidate for various biomedical applications. MDPI 2020-11-29 /pmc/articles/PMC7760762/ /pubmed/33260441 http://dx.doi.org/10.3390/nano10122383 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sharifi-Rad, Majid Pohl, Pawel Epifano, Francesco Álvarez-Suarez, José M. Green Synthesis of Silver Nanoparticles Using Astragalus tribuloides Delile. Root Extract: Characterization, Antioxidant, Antibacterial, and Anti-Inflammatory Activities |
title | Green Synthesis of Silver Nanoparticles Using Astragalus tribuloides Delile. Root Extract: Characterization, Antioxidant, Antibacterial, and Anti-Inflammatory Activities |
title_full | Green Synthesis of Silver Nanoparticles Using Astragalus tribuloides Delile. Root Extract: Characterization, Antioxidant, Antibacterial, and Anti-Inflammatory Activities |
title_fullStr | Green Synthesis of Silver Nanoparticles Using Astragalus tribuloides Delile. Root Extract: Characterization, Antioxidant, Antibacterial, and Anti-Inflammatory Activities |
title_full_unstemmed | Green Synthesis of Silver Nanoparticles Using Astragalus tribuloides Delile. Root Extract: Characterization, Antioxidant, Antibacterial, and Anti-Inflammatory Activities |
title_short | Green Synthesis of Silver Nanoparticles Using Astragalus tribuloides Delile. Root Extract: Characterization, Antioxidant, Antibacterial, and Anti-Inflammatory Activities |
title_sort | green synthesis of silver nanoparticles using astragalus tribuloides delile. root extract: characterization, antioxidant, antibacterial, and anti-inflammatory activities |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760762/ https://www.ncbi.nlm.nih.gov/pubmed/33260441 http://dx.doi.org/10.3390/nano10122383 |
work_keys_str_mv | AT sharifiradmajid greensynthesisofsilvernanoparticlesusingastragalustribuloidesdelilerootextractcharacterizationantioxidantantibacterialandantiinflammatoryactivities AT pohlpawel greensynthesisofsilvernanoparticlesusingastragalustribuloidesdelilerootextractcharacterizationantioxidantantibacterialandantiinflammatoryactivities AT epifanofrancesco greensynthesisofsilvernanoparticlesusingastragalustribuloidesdelilerootextractcharacterizationantioxidantantibacterialandantiinflammatoryactivities AT alvarezsuarezjosem greensynthesisofsilvernanoparticlesusingastragalustribuloidesdelilerootextractcharacterizationantioxidantantibacterialandantiinflammatoryactivities |