Cargando…

Design of High-Performance Polybenzoxazines with Tunable Extended Networks Based on Resveratrol and Allyl Functional Benzoxazine

A novel resveratrol-based bio-benzoxazine monomer (RES-al) containing an allyl group has been synthesized using resveratrol, allylamine, and paraformaldehyde via Mannich condensation reaction, and its chemical structures have been characterized by FT-IR spectroscopy and NMR techniques. The polymeriz...

Descripción completa

Detalles Bibliográficos
Autores principales: Xing, Yunliang, He, Xianru, Yang, Rui, Zhang, Kan, Yang, Shengfu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761256/
https://www.ncbi.nlm.nih.gov/pubmed/33255950
http://dx.doi.org/10.3390/polym12122794
Descripción
Sumario:A novel resveratrol-based bio-benzoxazine monomer (RES-al) containing an allyl group has been synthesized using resveratrol, allylamine, and paraformaldehyde via Mannich condensation reaction, and its chemical structures have been characterized by FT-IR spectroscopy and NMR techniques. The polymerization behavior of this benzoxazine resin has been investigated using in situ FT-IR and differential scanning calorimeter (DSC) measurements, and the thermal-mechanical properties of its corresponding polybenzoxazines are evaluated by DMA and TGA. We show that by controlling the curing process of the oxazine ring, the C=C bond in resveratrol, and the allyl group in RES-al, the cross-linking network of the polybenzoxazine can be manipulated, giving rise to tunable performance of thermosets. As all curable functionalities in RES-al are polymerized, the resulted polybenzoxazine exhibits a good thermal stability with a Tg temperature of 313 °C, a T(d5) value of 352 °C, and char yield of 53% at 800 °C under N(2).