Cargando…
An Improved Composite Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG
Motor Imagery Electroencephalography (MI-EEG) has shown good prospects in neurorehabilitation, and the entropy-based nonlinear dynamic methods have been successfully applied to feature extraction of MI-EEG. Especially based on Multiscale Fuzzy Entropy (MFE), the fuzzy entropies of the τ coarse-grain...
Autores principales: | Li, Mingai, Wang, Ruotu, Xu, Dongqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761434/ https://www.ncbi.nlm.nih.gov/pubmed/33266204 http://dx.doi.org/10.3390/e22121356 |
Ejemplares similares
-
An Improved Refined Composite Multivariate Multiscale Fuzzy Entropy Method for MI-EEG Feature Extraction
por: Li, Mingai, et al.
Publicado: (2019) -
An Incremental Version of L-MVU for the Feature Extraction of MI-EEG
por: Li, Mingai, et al.
Publicado: (2019) -
Fractional Refined Composite Multiscale Fuzzy Entropy of International Stock Indices
por: Wu, Zhiyong, et al.
Publicado: (2019) -
Multiscale Entropy as a New Feature for EEG and fNIRS Analysis
por: Angsuwatanakul, Thanate, et al.
Publicado: (2020) -
Weak Fault Feature Extraction of Rolling Bearings Based on Adaptive Variational Modal Decomposition and Multiscale Fuzzy Entropy
por: Lv, Zhongliang, et al.
Publicado: (2022)