Cargando…

A Legendre–Fenchel Transform for Molecular Stretching Energies

Single-molecular polymers can be used to analyze to what extent thermodynamics applies when the size of the system is drastically reduced. We have recently verified using molecular-dynamics simulations that isometric and isotensional stretching of a small polymer result in Helmholtz and Gibbs stretc...

Descripción completa

Detalles Bibliográficos
Autores principales: Bering, Eivind, Bedeaux, Dick, Kjelstrup, Signe, de Wijn, Astrid S., Latella, Ivan, Rubi, J. Miguel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761515/
https://www.ncbi.nlm.nih.gov/pubmed/33260922
http://dx.doi.org/10.3390/nano10122355
_version_ 1783627587340206080
author Bering, Eivind
Bedeaux, Dick
Kjelstrup, Signe
de Wijn, Astrid S.
Latella, Ivan
Rubi, J. Miguel
author_facet Bering, Eivind
Bedeaux, Dick
Kjelstrup, Signe
de Wijn, Astrid S.
Latella, Ivan
Rubi, J. Miguel
author_sort Bering, Eivind
collection PubMed
description Single-molecular polymers can be used to analyze to what extent thermodynamics applies when the size of the system is drastically reduced. We have recently verified using molecular-dynamics simulations that isometric and isotensional stretching of a small polymer result in Helmholtz and Gibbs stretching energies, which are not related to a Legendre transform, as they are for sufficiently long polymers. This disparity has also been observed experimentally. Using molecular dynamics simulations of polyethylene-oxide, we document for the first time that the Helmholtz and Gibbs stretching energies can be related by a Legendre–Fenchel transform. This opens up a possibility to apply this transform to other systems which are small in Hill’s sense.
format Online
Article
Text
id pubmed-7761515
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77615152020-12-26 A Legendre–Fenchel Transform for Molecular Stretching Energies Bering, Eivind Bedeaux, Dick Kjelstrup, Signe de Wijn, Astrid S. Latella, Ivan Rubi, J. Miguel Nanomaterials (Basel) Article Single-molecular polymers can be used to analyze to what extent thermodynamics applies when the size of the system is drastically reduced. We have recently verified using molecular-dynamics simulations that isometric and isotensional stretching of a small polymer result in Helmholtz and Gibbs stretching energies, which are not related to a Legendre transform, as they are for sufficiently long polymers. This disparity has also been observed experimentally. Using molecular dynamics simulations of polyethylene-oxide, we document for the first time that the Helmholtz and Gibbs stretching energies can be related by a Legendre–Fenchel transform. This opens up a possibility to apply this transform to other systems which are small in Hill’s sense. MDPI 2020-11-27 /pmc/articles/PMC7761515/ /pubmed/33260922 http://dx.doi.org/10.3390/nano10122355 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bering, Eivind
Bedeaux, Dick
Kjelstrup, Signe
de Wijn, Astrid S.
Latella, Ivan
Rubi, J. Miguel
A Legendre–Fenchel Transform for Molecular Stretching Energies
title A Legendre–Fenchel Transform for Molecular Stretching Energies
title_full A Legendre–Fenchel Transform for Molecular Stretching Energies
title_fullStr A Legendre–Fenchel Transform for Molecular Stretching Energies
title_full_unstemmed A Legendre–Fenchel Transform for Molecular Stretching Energies
title_short A Legendre–Fenchel Transform for Molecular Stretching Energies
title_sort legendre–fenchel transform for molecular stretching energies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761515/
https://www.ncbi.nlm.nih.gov/pubmed/33260922
http://dx.doi.org/10.3390/nano10122355
work_keys_str_mv AT beringeivind alegendrefencheltransformformolecularstretchingenergies
AT bedeauxdick alegendrefencheltransformformolecularstretchingenergies
AT kjelstrupsigne alegendrefencheltransformformolecularstretchingenergies
AT dewijnastrids alegendrefencheltransformformolecularstretchingenergies
AT latellaivan alegendrefencheltransformformolecularstretchingenergies
AT rubijmiguel alegendrefencheltransformformolecularstretchingenergies
AT beringeivind legendrefencheltransformformolecularstretchingenergies
AT bedeauxdick legendrefencheltransformformolecularstretchingenergies
AT kjelstrupsigne legendrefencheltransformformolecularstretchingenergies
AT dewijnastrids legendrefencheltransformformolecularstretchingenergies
AT latellaivan legendrefencheltransformformolecularstretchingenergies
AT rubijmiguel legendrefencheltransformformolecularstretchingenergies