Cargando…

Real-Time Remote Tele-Mentored Echocardiography: A Systematic Review

Background and Objectives: Real-time remote tele-mentored echocardiography (RTMUS echo) involves the transmission of clinical ultrasound (CU) cardiac images with direct feedback from a CU expert at a different location. In this review, we summarize the current uses of RTMUS to diagnose and manage ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Salerno, Alexis, Kuhn, Diane, El Sibai, Rayan, Levine, Andrea R., McCurdy, Michael T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761589/
https://www.ncbi.nlm.nih.gov/pubmed/33276628
http://dx.doi.org/10.3390/medicina56120668
Descripción
Sumario:Background and Objectives: Real-time remote tele-mentored echocardiography (RTMUS echo) involves the transmission of clinical ultrasound (CU) cardiac images with direct feedback from a CU expert at a different location. In this review, we summarize the current uses of RTMUS to diagnose and manage cardiovascular dysfunction and discuss expanded and future uses. Materials and Methods: We performed a literature search (PubMed and EMBase) to access articles related to RTMUS echo. We reviewed articles for selection using Covidence, a web-based tool for managing systematic reviews and data were extracted using a separate standardized collection form. Results: Our search yielded 15 articles. Twelve of these articles demonstrated the feasibility of having a novice sonographer mentored by a tele-expert in obtaining a variety of cardiac ultrasound views. The articles discussed different technological specifications for the RTMUS system, but all showed that adequate images were able to be obtained. Overall, RTMUS echo was found to be a positive intervention that contributed to patient care. Conclusion: RTMUS echo allows for rapid access to diagnostic imaging in various clinical settings. RTMUS echo can help in assessing patients that may require a higher level of isolation precautions or in other resource-constrained environments. In the future, identifying the least expensive way to utilize RTMUS echo will be important.