Cargando…
Panax ginseng Fruit Has Anti-Inflammatory Effect and Induces Osteogenic Differentiation by Regulating Nrf2/HO-1 Signaling Pathway in In Vitro and In Vivo Models of Periodontitis
Periodontitis is an infectious inflammatory disease of tissues around teeth that destroys connective tissues and is characterized by the loss of periodontal ligaments and alveolar bone. A new treatment strategy is needed owing to the limitations of the current surgical treatment method and the side...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761716/ https://www.ncbi.nlm.nih.gov/pubmed/33287198 http://dx.doi.org/10.3390/antiox9121221 |
_version_ | 1783627633525784576 |
---|---|
author | Kim, Eun-Nam Kim, Tae-Young Park, Eui Kyun Kim, Jae-Young Jeong, Gil-Saeng |
author_facet | Kim, Eun-Nam Kim, Tae-Young Park, Eui Kyun Kim, Jae-Young Jeong, Gil-Saeng |
author_sort | Kim, Eun-Nam |
collection | PubMed |
description | Periodontitis is an infectious inflammatory disease of tissues around teeth that destroys connective tissues and is characterized by the loss of periodontal ligaments and alveolar bone. A new treatment strategy is needed owing to the limitations of the current surgical treatment method and the side effects of anti-inflammatory drugs. Therefore, here, we assessed whether Panax ginseng fruit extract (PGFE) is a new therapeutic agent for periodontitis in vitro and in vivo. According to the results, PGFE suppressed pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, and pro-inflammatory mediators such as inducible nitric oxide synthase and cyclooxygenase-2 through heme oxygenase-1 expression in human periodontal ligament cells stimulated with Porphyromonas gingivalis lipopolysaccharide (PG-LPS). In addition, the osteogenic induction of human periodontal ligament cells was inhibited by PG-LPS, and protein and mRNA levels of osteogenic markers such as alkaline phosphatase, collagen type 1 (COL1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2) were increased. The efficacy of PGFE for inhibiting periodontitis in vitro was demonstrated in a representative in vitro model of periodontitis induced by ligature and PG-LPS. Subsequently, hematoxylin and eosin staining and micro-computed tomography of the euthanized experimental animal model confirmed suppressed periodontal inflammation, which is an important strategy for treating periodontitis and for recovering the resulting alveolar bone loss. Therefore, PGFE is a potential, novel therapeutic agent for periodontal diseases. |
format | Online Article Text |
id | pubmed-7761716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77617162020-12-26 Panax ginseng Fruit Has Anti-Inflammatory Effect and Induces Osteogenic Differentiation by Regulating Nrf2/HO-1 Signaling Pathway in In Vitro and In Vivo Models of Periodontitis Kim, Eun-Nam Kim, Tae-Young Park, Eui Kyun Kim, Jae-Young Jeong, Gil-Saeng Antioxidants (Basel) Article Periodontitis is an infectious inflammatory disease of tissues around teeth that destroys connective tissues and is characterized by the loss of periodontal ligaments and alveolar bone. A new treatment strategy is needed owing to the limitations of the current surgical treatment method and the side effects of anti-inflammatory drugs. Therefore, here, we assessed whether Panax ginseng fruit extract (PGFE) is a new therapeutic agent for periodontitis in vitro and in vivo. According to the results, PGFE suppressed pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, and pro-inflammatory mediators such as inducible nitric oxide synthase and cyclooxygenase-2 through heme oxygenase-1 expression in human periodontal ligament cells stimulated with Porphyromonas gingivalis lipopolysaccharide (PG-LPS). In addition, the osteogenic induction of human periodontal ligament cells was inhibited by PG-LPS, and protein and mRNA levels of osteogenic markers such as alkaline phosphatase, collagen type 1 (COL1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2) were increased. The efficacy of PGFE for inhibiting periodontitis in vitro was demonstrated in a representative in vitro model of periodontitis induced by ligature and PG-LPS. Subsequently, hematoxylin and eosin staining and micro-computed tomography of the euthanized experimental animal model confirmed suppressed periodontal inflammation, which is an important strategy for treating periodontitis and for recovering the resulting alveolar bone loss. Therefore, PGFE is a potential, novel therapeutic agent for periodontal diseases. MDPI 2020-12-03 /pmc/articles/PMC7761716/ /pubmed/33287198 http://dx.doi.org/10.3390/antiox9121221 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Eun-Nam Kim, Tae-Young Park, Eui Kyun Kim, Jae-Young Jeong, Gil-Saeng Panax ginseng Fruit Has Anti-Inflammatory Effect and Induces Osteogenic Differentiation by Regulating Nrf2/HO-1 Signaling Pathway in In Vitro and In Vivo Models of Periodontitis |
title | Panax ginseng Fruit Has Anti-Inflammatory Effect and Induces Osteogenic Differentiation by Regulating Nrf2/HO-1 Signaling Pathway in In Vitro and In Vivo Models of Periodontitis |
title_full | Panax ginseng Fruit Has Anti-Inflammatory Effect and Induces Osteogenic Differentiation by Regulating Nrf2/HO-1 Signaling Pathway in In Vitro and In Vivo Models of Periodontitis |
title_fullStr | Panax ginseng Fruit Has Anti-Inflammatory Effect and Induces Osteogenic Differentiation by Regulating Nrf2/HO-1 Signaling Pathway in In Vitro and In Vivo Models of Periodontitis |
title_full_unstemmed | Panax ginseng Fruit Has Anti-Inflammatory Effect and Induces Osteogenic Differentiation by Regulating Nrf2/HO-1 Signaling Pathway in In Vitro and In Vivo Models of Periodontitis |
title_short | Panax ginseng Fruit Has Anti-Inflammatory Effect and Induces Osteogenic Differentiation by Regulating Nrf2/HO-1 Signaling Pathway in In Vitro and In Vivo Models of Periodontitis |
title_sort | panax ginseng fruit has anti-inflammatory effect and induces osteogenic differentiation by regulating nrf2/ho-1 signaling pathway in in vitro and in vivo models of periodontitis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761716/ https://www.ncbi.nlm.nih.gov/pubmed/33287198 http://dx.doi.org/10.3390/antiox9121221 |
work_keys_str_mv | AT kimeunnam panaxginsengfruithasantiinflammatoryeffectandinducesosteogenicdifferentiationbyregulatingnrf2ho1signalingpathwayininvitroandinvivomodelsofperiodontitis AT kimtaeyoung panaxginsengfruithasantiinflammatoryeffectandinducesosteogenicdifferentiationbyregulatingnrf2ho1signalingpathwayininvitroandinvivomodelsofperiodontitis AT parkeuikyun panaxginsengfruithasantiinflammatoryeffectandinducesosteogenicdifferentiationbyregulatingnrf2ho1signalingpathwayininvitroandinvivomodelsofperiodontitis AT kimjaeyoung panaxginsengfruithasantiinflammatoryeffectandinducesosteogenicdifferentiationbyregulatingnrf2ho1signalingpathwayininvitroandinvivomodelsofperiodontitis AT jeonggilsaeng panaxginsengfruithasantiinflammatoryeffectandinducesosteogenicdifferentiationbyregulatingnrf2ho1signalingpathwayininvitroandinvivomodelsofperiodontitis |