Cargando…

The Current Trends in Using Nanoparticles, Liposomes, and Exosomes for Semen Cryopreservation

SIMPLE SUMMARY: Long-term preservation of semen is a pivotal step for artificial insemination in most farm animal species, but it is associated with cellular insults at the cell membrane and cytoskeleton level as well as the generation of reactive oxygen species (ROS). We highlight the recent strate...

Descripción completa

Detalles Bibliográficos
Autores principales: Saadeldin, Islam M., Khalil, Wael A., Alharbi, Mona G., Lee, Seok Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761754/
https://www.ncbi.nlm.nih.gov/pubmed/33287256
http://dx.doi.org/10.3390/ani10122281
Descripción
Sumario:SIMPLE SUMMARY: Long-term preservation of semen is a pivotal step for artificial insemination in most farm animal species, but it is associated with cellular insults at the cell membrane and cytoskeleton level as well as the generation of reactive oxygen species (ROS). We highlight the recent strategies to combat these negative effects through defending against the ROS via antioxidant nanoparticles or through repairing/regenerating the damaged sperm through using liposomes and most recently exosomes derived from the reproductive tract or stem cells. ABSTRACT: Cryopreservation is an essential tool to preserve sperm cells for zootechnical management and artificial insemination purposes. Cryopreservation is associated with sperm damage via different levels of plasma membrane injury and oxidative stress. Nanoparticles are often used to defend against free radicals and oxidative stress generated through the entire process of cryopreservation. Recently, artificial or natural nanovesicles including liposomes and exosomes, respectively, have shown regenerative capabilities to repair damaged sperm during the freeze–thaw process. Exosomes possess a potential pleiotropic effect because they contain antioxidants, lipids, and other bioactive molecules regulating and repairing spermatozoa. In this review, we highlight the current strategies of using nanoparticles and nanovesicles (liposomes and exosomes) to combat the cryoinjuries associated with semen cryopreservation.