Cargando…

Biodegradable Hydrogels Loaded with Magnetically Responsive Microspheres as 2D and 3D Scaffolds

Scaffolds play an essential role in the success of tissue engineering approaches. Their intrinsic properties are known to influence cellular processes such as adhesion, proliferation and differentiation. Hydrogel-based matrices are attractive scaffolds due to their high-water content resembling the...

Descripción completa

Detalles Bibliográficos
Autores principales: Carvalho, Estela O., Ribeiro, Clarisse, Correia, Daniela M., Botelho, Gabriela, Lanceros-Mendez, Senentxu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761810/
https://www.ncbi.nlm.nih.gov/pubmed/33287454
http://dx.doi.org/10.3390/nano10122421
Descripción
Sumario:Scaffolds play an essential role in the success of tissue engineering approaches. Their intrinsic properties are known to influence cellular processes such as adhesion, proliferation and differentiation. Hydrogel-based matrices are attractive scaffolds due to their high-water content resembling the native extracellular matrix. In addition, polymer-based magnetoelectric materials have demonstrated suitable bioactivity, allowing to provide magnetically and mechanically activated biophysical electrical stimuli capable of improving cellular processes. The present work reports on a responsive scaffold based on poly (L-lactic acid) (PLLA) microspheres and magnetic microsphere nanocomposites composed of PLLA and magnetostrictive cobalt ferrites (CoFe(2)O(4)), combined with a hydrogel matrix, which mimics the tissue’s hydrated environment and acts as a support matrix. For cell proliferation evaluation, two different cell culture conditions (2D and 3D matrices) and two different strategies, static and dynamic culture, were applied in order to evaluate the influence of extracellular matrix-like confinement and the magnetoelectric/magneto-mechanical effect on cellular behavior. MC3T3-E1 proliferation rate is increased under dynamic conditions, indicating the potential use of hydrogel matrices with remotely stimulated magnetostrictive biomaterials for bone tissue engineering.