Cargando…
SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation
SIMPLE SUMMARY: This paper proposes a novel generative adversarial networks model, SynSigGAN, to generate any kind of synthetic biomedical signals. The generation of synthetic signals eliminates confidentiality concerns and accessibility problem of medical data. Synthetic data can be utilized for tr...
Autores principales: | Hazra, Debapriya, Byun, Yung-Cheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761837/ https://www.ncbi.nlm.nih.gov/pubmed/33287366 http://dx.doi.org/10.3390/biology9120441 |
Ejemplares similares
-
Generative Adversarial Networks for Creating Synthetic Nucleic Acid Sequences of Cat Genome
por: Hazra, Debapriya, et al.
Publicado: (2022) -
Synthesis of Microscopic Cell Images Obtained from Bone Marrow Aspirate Smears through Generative Adversarial Networks
por: Hazra, Debapriya, et al.
Publicado: (2022) -
Generation of synthetic ground glass nodules using generative adversarial networks (GANs)
por: Wang, Zhixiang, et al.
Publicado: (2022) -
Propensity score synthetic augmentation matching using generative adversarial networks (PSSAM-GAN)
por: Ghosh, Shantanu, et al.
Publicado: (2021) -
Application of Generative Adversarial Networks (GANs) to jet images
por: Paganini, Michela
Publicado: (2017)