Cargando…
EEG Source Network for the Diagnosis of Schizophrenia and the Identification of Subtypes Based on Symptom Severity—A Machine Learning Approach
A precise diagnosis and a comprehensive assessment of symptom severity are important clinical issues in patients with schizophrenia (SZ). We investigated whether electroencephalography (EEG) features obtained from EEG source network analyses could be effectively applied to classify the SZ subtypes b...
Autores principales: | Kim, Jeong-Youn, Lee, Hyun Seo, Lee, Seung-Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761931/ https://www.ncbi.nlm.nih.gov/pubmed/33291657 http://dx.doi.org/10.3390/jcm9123934 |
Ejemplares similares
-
Estimation of Symptom Severity Scores for Patients with Schizophrenia Using ERP Source Activations during a Facial Affect Discrimination Task
por: Kim, Do-Won, et al.
Publicado: (2017) -
Distinct Differences in Emotional Recognition According to Severity of Psychotic Symptoms in Early-Stage Schizophrenia
por: Won, Seunghee, et al.
Publicado: (2019) -
Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults
por: Johannesen, Jason K., et al.
Publicado: (2016) -
EEG Microstates and Its Relationship With Clinical Symptoms in Patients With Schizophrenia
por: Sun, Qiaoling, et al.
Publicado: (2021) -
An Interpretable Machine Learning Method for the Detection of Schizophrenia Using EEG Signals
por: Vázquez, Manuel A., et al.
Publicado: (2021)