Cargando…
A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation
Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain o...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762383/ https://www.ncbi.nlm.nih.gov/pubmed/33297452 http://dx.doi.org/10.3390/membranes10120402 |
_version_ | 1783627792704864256 |
---|---|
author | Chiao, Yu-Hsuan Yap Ang, Micah Belle Marie Huang, Yu-Xi DePaz, Sandrina Svetlana Chang, Yung Almodovar, Jorge Wickramasinghe, S. Ranil |
author_facet | Chiao, Yu-Hsuan Yap Ang, Micah Belle Marie Huang, Yu-Xi DePaz, Sandrina Svetlana Chang, Yung Almodovar, Jorge Wickramasinghe, S. Ranil |
author_sort | Chiao, Yu-Hsuan |
collection | PubMed |
description | Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain over 200,000 ppm total dissolved solids, organic compounds and surfactants. The membrane consists of an omniphobic surface that faces the permeate stream and a hydrophilic surface that faces the feed stream. The omniphobic surface was decorated by growing nanoparticles, followed by silanization to lower the surface energy. An epoxied zwitterionic polymer was grafted onto the membrane surface that faces the feed stream to form a tight antifouling hydration layer. The membrane was challenged with an aqueous NaCl solution containing sodium dodecyl sulfate (SDS), an ampholyte and crude oil. In the presence of SDS and crude oil, the membrane was stable and displayed salt rejection (>99.9%). Further, the decrease was much less than the base polyvinylidene difluoride (PVDF) electrospun membrane. The membranes were also challenged with actual PW. Our results highlight the importance of tuning the properties of the membrane surface that faces the feed and permeate streams in order to maximize membrane stability, flux and salt rejection. |
format | Online Article Text |
id | pubmed-7762383 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77623832020-12-26 A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation Chiao, Yu-Hsuan Yap Ang, Micah Belle Marie Huang, Yu-Xi DePaz, Sandrina Svetlana Chang, Yung Almodovar, Jorge Wickramasinghe, S. Ranil Membranes (Basel) Article Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain over 200,000 ppm total dissolved solids, organic compounds and surfactants. The membrane consists of an omniphobic surface that faces the permeate stream and a hydrophilic surface that faces the feed stream. The omniphobic surface was decorated by growing nanoparticles, followed by silanization to lower the surface energy. An epoxied zwitterionic polymer was grafted onto the membrane surface that faces the feed stream to form a tight antifouling hydration layer. The membrane was challenged with an aqueous NaCl solution containing sodium dodecyl sulfate (SDS), an ampholyte and crude oil. In the presence of SDS and crude oil, the membrane was stable and displayed salt rejection (>99.9%). Further, the decrease was much less than the base polyvinylidene difluoride (PVDF) electrospun membrane. The membranes were also challenged with actual PW. Our results highlight the importance of tuning the properties of the membrane surface that faces the feed and permeate streams in order to maximize membrane stability, flux and salt rejection. MDPI 2020-12-07 /pmc/articles/PMC7762383/ /pubmed/33297452 http://dx.doi.org/10.3390/membranes10120402 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chiao, Yu-Hsuan Yap Ang, Micah Belle Marie Huang, Yu-Xi DePaz, Sandrina Svetlana Chang, Yung Almodovar, Jorge Wickramasinghe, S. Ranil A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation |
title | A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation |
title_full | A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation |
title_fullStr | A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation |
title_full_unstemmed | A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation |
title_short | A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation |
title_sort | “graft to” electrospun zwitterionic bilayer membrane for the separation of hydraulic fracturing-produced water via membrane distillation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762383/ https://www.ncbi.nlm.nih.gov/pubmed/33297452 http://dx.doi.org/10.3390/membranes10120402 |
work_keys_str_mv | AT chiaoyuhsuan agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation AT yapangmicahbellemarie agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation AT huangyuxi agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation AT depazsandrinasvetlana agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation AT changyung agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation AT almodovarjorge agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation AT wickramasinghesranil agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation AT chiaoyuhsuan grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation AT yapangmicahbellemarie grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation AT huangyuxi grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation AT depazsandrinasvetlana grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation AT changyung grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation AT almodovarjorge grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation AT wickramasinghesranil grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation |