Cargando…

A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation

Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain o...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiao, Yu-Hsuan, Yap Ang, Micah Belle Marie, Huang, Yu-Xi, DePaz, Sandrina Svetlana, Chang, Yung, Almodovar, Jorge, Wickramasinghe, S. Ranil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762383/
https://www.ncbi.nlm.nih.gov/pubmed/33297452
http://dx.doi.org/10.3390/membranes10120402
_version_ 1783627792704864256
author Chiao, Yu-Hsuan
Yap Ang, Micah Belle Marie
Huang, Yu-Xi
DePaz, Sandrina Svetlana
Chang, Yung
Almodovar, Jorge
Wickramasinghe, S. Ranil
author_facet Chiao, Yu-Hsuan
Yap Ang, Micah Belle Marie
Huang, Yu-Xi
DePaz, Sandrina Svetlana
Chang, Yung
Almodovar, Jorge
Wickramasinghe, S. Ranil
author_sort Chiao, Yu-Hsuan
collection PubMed
description Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain over 200,000 ppm total dissolved solids, organic compounds and surfactants. The membrane consists of an omniphobic surface that faces the permeate stream and a hydrophilic surface that faces the feed stream. The omniphobic surface was decorated by growing nanoparticles, followed by silanization to lower the surface energy. An epoxied zwitterionic polymer was grafted onto the membrane surface that faces the feed stream to form a tight antifouling hydration layer. The membrane was challenged with an aqueous NaCl solution containing sodium dodecyl sulfate (SDS), an ampholyte and crude oil. In the presence of SDS and crude oil, the membrane was stable and displayed salt rejection (>99.9%). Further, the decrease was much less than the base polyvinylidene difluoride (PVDF) electrospun membrane. The membranes were also challenged with actual PW. Our results highlight the importance of tuning the properties of the membrane surface that faces the feed and permeate streams in order to maximize membrane stability, flux and salt rejection.
format Online
Article
Text
id pubmed-7762383
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77623832020-12-26 A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation Chiao, Yu-Hsuan Yap Ang, Micah Belle Marie Huang, Yu-Xi DePaz, Sandrina Svetlana Chang, Yung Almodovar, Jorge Wickramasinghe, S. Ranil Membranes (Basel) Article Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain over 200,000 ppm total dissolved solids, organic compounds and surfactants. The membrane consists of an omniphobic surface that faces the permeate stream and a hydrophilic surface that faces the feed stream. The omniphobic surface was decorated by growing nanoparticles, followed by silanization to lower the surface energy. An epoxied zwitterionic polymer was grafted onto the membrane surface that faces the feed stream to form a tight antifouling hydration layer. The membrane was challenged with an aqueous NaCl solution containing sodium dodecyl sulfate (SDS), an ampholyte and crude oil. In the presence of SDS and crude oil, the membrane was stable and displayed salt rejection (>99.9%). Further, the decrease was much less than the base polyvinylidene difluoride (PVDF) electrospun membrane. The membranes were also challenged with actual PW. Our results highlight the importance of tuning the properties of the membrane surface that faces the feed and permeate streams in order to maximize membrane stability, flux and salt rejection. MDPI 2020-12-07 /pmc/articles/PMC7762383/ /pubmed/33297452 http://dx.doi.org/10.3390/membranes10120402 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chiao, Yu-Hsuan
Yap Ang, Micah Belle Marie
Huang, Yu-Xi
DePaz, Sandrina Svetlana
Chang, Yung
Almodovar, Jorge
Wickramasinghe, S. Ranil
A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation
title A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation
title_full A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation
title_fullStr A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation
title_full_unstemmed A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation
title_short A “Graft to” Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation
title_sort “graft to” electrospun zwitterionic bilayer membrane for the separation of hydraulic fracturing-produced water via membrane distillation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762383/
https://www.ncbi.nlm.nih.gov/pubmed/33297452
http://dx.doi.org/10.3390/membranes10120402
work_keys_str_mv AT chiaoyuhsuan agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation
AT yapangmicahbellemarie agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation
AT huangyuxi agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation
AT depazsandrinasvetlana agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation
AT changyung agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation
AT almodovarjorge agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation
AT wickramasinghesranil agrafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation
AT chiaoyuhsuan grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation
AT yapangmicahbellemarie grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation
AT huangyuxi grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation
AT depazsandrinasvetlana grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation
AT changyung grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation
AT almodovarjorge grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation
AT wickramasinghesranil grafttoelectrospunzwitterionicbilayermembranefortheseparationofhydraulicfracturingproducedwaterviamembranedistillation