Cargando…
The ZiBuPiYin recipe regulates proteomic alterations in brain mitochondria-associated ER membranes caused by chronic psychological stress exposure: Implications for cognitive decline in Zucker diabetic fatty rats
Chronic psychological stress (PS) cumulatively affects memory performance through the deleterious effects on hypothalamic-pituitary-adrenal axis regulation. Several functions damaged in cognitive impairment-related diseases are regulated by mitochondria-associated ER membranes (MAMs). To elucidate t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762487/ https://www.ncbi.nlm.nih.gov/pubmed/33221746 http://dx.doi.org/10.18632/aging.103894 |
_version_ | 1783627817570795520 |
---|---|
author | Xu, Huiying Zhou, Wen Zhan, Libin Sui, Hua Zhang, Lijing Zhao, Chunyan Lu, Xiaoguang |
author_facet | Xu, Huiying Zhou, Wen Zhan, Libin Sui, Hua Zhang, Lijing Zhao, Chunyan Lu, Xiaoguang |
author_sort | Xu, Huiying |
collection | PubMed |
description | Chronic psychological stress (PS) cumulatively affects memory performance through the deleterious effects on hypothalamic-pituitary-adrenal axis regulation. Several functions damaged in cognitive impairment-related diseases are regulated by mitochondria-associated ER membranes (MAMs). To elucidate the role of ZiBuPiYin recipe (ZBPYR) in regulating the MAM proteome to improve PS-induced diabetes-associated cognitive decline (PSD), differentially expressed MAM proteins were identified among Zucker diabetic fatty rats, PSD rats, and PS combined with ZBPYR administration rats via iTRAQ with LC-MS/MS. Proteomic analysis revealed that the expressions of 85 and 33 proteins were altered by PS and ZBPYR treatment, respectively. Among these, 21 proteins were differentially expressed under both PS and ZBPYR treatments, whose functional categories included energy metabolism, lipid and protein metabolism, and synaptic dysfunction. Furthermore, calcium signaling and autophagy-related proteins may play roles in the pathogenesis of PSD and the mechanism of ZBPYR, respectively. Notably, KEGG pathway analysis suggested that ‘Alzheimer's disease’ and ‘oxidative phosphorylation’ pathways may be impaired in PSD pathogenesis, while ZBPYR could play a neuroprotective role through regulating the above pathways. Overall, exposure to chronic PS contributes to the evolution of diabetes-associated cognitive decline and ZBPYR might prevent and treat PSD by regulating the MAM proteome. |
format | Online Article Text |
id | pubmed-7762487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Impact Journals |
record_format | MEDLINE/PubMed |
spelling | pubmed-77624872021-01-08 The ZiBuPiYin recipe regulates proteomic alterations in brain mitochondria-associated ER membranes caused by chronic psychological stress exposure: Implications for cognitive decline in Zucker diabetic fatty rats Xu, Huiying Zhou, Wen Zhan, Libin Sui, Hua Zhang, Lijing Zhao, Chunyan Lu, Xiaoguang Aging (Albany NY) Research Paper Chronic psychological stress (PS) cumulatively affects memory performance through the deleterious effects on hypothalamic-pituitary-adrenal axis regulation. Several functions damaged in cognitive impairment-related diseases are regulated by mitochondria-associated ER membranes (MAMs). To elucidate the role of ZiBuPiYin recipe (ZBPYR) in regulating the MAM proteome to improve PS-induced diabetes-associated cognitive decline (PSD), differentially expressed MAM proteins were identified among Zucker diabetic fatty rats, PSD rats, and PS combined with ZBPYR administration rats via iTRAQ with LC-MS/MS. Proteomic analysis revealed that the expressions of 85 and 33 proteins were altered by PS and ZBPYR treatment, respectively. Among these, 21 proteins were differentially expressed under both PS and ZBPYR treatments, whose functional categories included energy metabolism, lipid and protein metabolism, and synaptic dysfunction. Furthermore, calcium signaling and autophagy-related proteins may play roles in the pathogenesis of PSD and the mechanism of ZBPYR, respectively. Notably, KEGG pathway analysis suggested that ‘Alzheimer's disease’ and ‘oxidative phosphorylation’ pathways may be impaired in PSD pathogenesis, while ZBPYR could play a neuroprotective role through regulating the above pathways. Overall, exposure to chronic PS contributes to the evolution of diabetes-associated cognitive decline and ZBPYR might prevent and treat PSD by regulating the MAM proteome. Impact Journals 2020-11-18 /pmc/articles/PMC7762487/ /pubmed/33221746 http://dx.doi.org/10.18632/aging.103894 Text en Copyright: © 2020 Xu et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Xu, Huiying Zhou, Wen Zhan, Libin Sui, Hua Zhang, Lijing Zhao, Chunyan Lu, Xiaoguang The ZiBuPiYin recipe regulates proteomic alterations in brain mitochondria-associated ER membranes caused by chronic psychological stress exposure: Implications for cognitive decline in Zucker diabetic fatty rats |
title | The ZiBuPiYin recipe regulates proteomic alterations in brain mitochondria-associated ER membranes caused by chronic psychological stress exposure: Implications for cognitive decline in Zucker diabetic fatty rats |
title_full | The ZiBuPiYin recipe regulates proteomic alterations in brain mitochondria-associated ER membranes caused by chronic psychological stress exposure: Implications for cognitive decline in Zucker diabetic fatty rats |
title_fullStr | The ZiBuPiYin recipe regulates proteomic alterations in brain mitochondria-associated ER membranes caused by chronic psychological stress exposure: Implications for cognitive decline in Zucker diabetic fatty rats |
title_full_unstemmed | The ZiBuPiYin recipe regulates proteomic alterations in brain mitochondria-associated ER membranes caused by chronic psychological stress exposure: Implications for cognitive decline in Zucker diabetic fatty rats |
title_short | The ZiBuPiYin recipe regulates proteomic alterations in brain mitochondria-associated ER membranes caused by chronic psychological stress exposure: Implications for cognitive decline in Zucker diabetic fatty rats |
title_sort | zibupiyin recipe regulates proteomic alterations in brain mitochondria-associated er membranes caused by chronic psychological stress exposure: implications for cognitive decline in zucker diabetic fatty rats |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762487/ https://www.ncbi.nlm.nih.gov/pubmed/33221746 http://dx.doi.org/10.18632/aging.103894 |
work_keys_str_mv | AT xuhuiying thezibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats AT zhouwen thezibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats AT zhanlibin thezibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats AT suihua thezibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats AT zhanglijing thezibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats AT zhaochunyan thezibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats AT luxiaoguang thezibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats AT xuhuiying zibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats AT zhouwen zibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats AT zhanlibin zibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats AT suihua zibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats AT zhanglijing zibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats AT zhaochunyan zibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats AT luxiaoguang zibupiyinreciperegulatesproteomicalterationsinbrainmitochondriaassociatedermembranescausedbychronicpsychologicalstressexposureimplicationsforcognitivedeclineinzuckerdiabeticfattyrats |