Cargando…
Quantitative Determination of Acrolein in Cider by (1)H NMR Spectrometry
Acrolein occasionally appears in cider, completely spoiling its quality due to its bitter taste. It is crucial to detect it in the early steps, before the taste is severely affected, to apply the appropriate treatment. A simple and rapid analytical method to determine this compound in cider is there...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762539/ https://www.ncbi.nlm.nih.gov/pubmed/33302379 http://dx.doi.org/10.3390/foods9121820 |
Sumario: | Acrolein occasionally appears in cider, completely spoiling its quality due to its bitter taste. It is crucial to detect it in the early steps, before the taste is severely affected, to apply the appropriate treatment. A simple and rapid analytical method to determine this compound in cider is therefore desirable. In this work, a quantitative determination method of acrolein in cider is proposed using the proton nuclear magnetic resonance technique ((1)H NMR). Acrolein produces a doublet signal in the spectrum at 9.49 ppm, whose area is used to determine the concentration of this compound. 3-(trimethylsilyl)-2,2,3,3-d(4)-propionic acid sodium salt is added to the cider as a reference for 0.00 ppm and 1,3,5-benzenetricarboxylic acid as an internal standard for acrolein determination. The method is validated by gas chromatography (GC). There is a good correlation between the acrolein concentrations obtained by (1)H NMR and by gas chromatography in different commercial ciders (Pearson coefficient 0.9994). The 95% confidence interval for the intercept is 0.15 ± 0.49 (includes 0) and for the slope is 0.98 ± 0.03 (includes 1). When applying the paired t test, no significant difference is observed. The proposed method is direct, and no prior derivatization is needed. |
---|