Cargando…
Coastal Land Cover Classification of High-Resolution Remote Sensing Images Using Attention-Driven Context Encoding Network
Low inter-class variance and complex spatial details exist in ground objects of the coastal zone, which leads to a challenging task for coastal land cover classification (CLCC) from high-resolution remote sensing images. Recently, fully convolutional neural networks have been widely used in CLCC. Ho...
Autores principales: | Chen, Jifa, Chen, Gang, Wang, Lizhe, Fang, Bo, Zhou, Ping, Zhu, Mingjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763023/ https://www.ncbi.nlm.nih.gov/pubmed/33302547 http://dx.doi.org/10.3390/s20247032 |
Ejemplares similares
-
Scale Effect of Land Cover Classification from Multi-Resolution Satellite Remote Sensing Data
por: Li, Runxiang, et al.
Publicado: (2023) -
Application of High-Resolution Remote-Sensing Data for Land Use Land Cover Mapping of University Campus
por: Dharmawan, Irwan Ary, et al.
Publicado: (2021) -
Remote sensing based analysis of land cover and land cover change in Central Sulawesi, Indonesia
por: Knieper, Christian, et al.
Publicado: (2012) -
Remote sensing of 10 years changes in the vegetation cover of the northwestern coastal land of Red Sea, Saudi Arabia
por: Alharthi, Awad, et al.
Publicado: (2020) -
Land-Use and Land-Cover Classification in Semi-Arid Areas from Medium-Resolution Remote-Sensing Imagery: A Deep Learning Approach
por: Ali, Kamran, et al.
Publicado: (2022)