Cargando…
Comparison of Soil Total Nitrogen Content Prediction Models Based on Vis-NIR Spectroscopy
Visible-near-infrared spectrum (Vis-NIR) spectroscopy technology is one of the most important methods for non-destructive and rapid detection of soil total nitrogen (STN) content. In order to find a practical way to build STN content prediction model, three conventional machine learning methods and...
Autores principales: | Wang, Yueting, Li, Minzan, Ji, Ronghua, Wang, Minjuan, Zheng, Lihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763030/ https://www.ncbi.nlm.nih.gov/pubmed/33321833 http://dx.doi.org/10.3390/s20247078 |
Ejemplares similares
-
Comparison of Depth-Specific Prediction of Soil Properties: MIR vs. Vis-NIR Spectroscopy
por: Shi, Zhan, et al.
Publicado: (2023) -
Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy
por: Ding, Jianli, et al.
Publicado: (2018) -
Comparison between Random Forests, Artificial Neural Networks and Gradient Boosted Machines Methods of On-Line Vis-NIR Spectroscopy Measurements of Soil Total Nitrogen and Total Carbon
por: Nawar, Said, et al.
Publicado: (2017) -
In Situ VIS-NIR Spectroscopy for a Basic and Rapid Soil Investigation
por: Debaene, Guillaume, et al.
Publicado: (2023) -
Vis/NIR reflectance spectroscopy for hybrid rice variety identification and chlorophyll content evaluation for different nitrogen fertilizer levels
por: Zhang, Hao, et al.
Publicado: (2019)