Cargando…
Hydrodynamic and Thermodynamic Nonequilibrium Effects around Shock Waves: Based on a Discrete Boltzmann Method
A shock wave that is characterized by sharp physical gradients always draws the medium out of equilibrium. In this work, both hydrodynamic and thermodynamic nonequilibrium effects around the shock wave are investigated using a discrete Boltzmann model. Via Chapman–Enskog analysis, the local equilibr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763068/ https://www.ncbi.nlm.nih.gov/pubmed/33321966 http://dx.doi.org/10.3390/e22121397 |
_version_ | 1783627929550323712 |
---|---|
author | Lin, Chuandong Su, Xianli Zhang, Yudong |
author_facet | Lin, Chuandong Su, Xianli Zhang, Yudong |
author_sort | Lin, Chuandong |
collection | PubMed |
description | A shock wave that is characterized by sharp physical gradients always draws the medium out of equilibrium. In this work, both hydrodynamic and thermodynamic nonequilibrium effects around the shock wave are investigated using a discrete Boltzmann model. Via Chapman–Enskog analysis, the local equilibrium and nonequilibrium velocity distribution functions in one-, two-, and three-dimensional velocity space are recovered across the shock wave. Besides, the absolute and relative deviation degrees are defined in order to describe the departure of the fluid system from the equilibrium state. The local and global nonequilibrium effects, nonorganized energy, and nonorganized energy flux are also investigated. Moreover, the impacts of the relaxation frequency, Mach number, thermal conductivity, viscosity, and the specific heat ratio on the nonequilibrium behaviours around shock waves are studied. This work is helpful for a deeper understanding of the fine structures of shock wave and nonequilibrium statistical mechanics. |
format | Online Article Text |
id | pubmed-7763068 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77630682021-02-24 Hydrodynamic and Thermodynamic Nonequilibrium Effects around Shock Waves: Based on a Discrete Boltzmann Method Lin, Chuandong Su, Xianli Zhang, Yudong Entropy (Basel) Article A shock wave that is characterized by sharp physical gradients always draws the medium out of equilibrium. In this work, both hydrodynamic and thermodynamic nonequilibrium effects around the shock wave are investigated using a discrete Boltzmann model. Via Chapman–Enskog analysis, the local equilibrium and nonequilibrium velocity distribution functions in one-, two-, and three-dimensional velocity space are recovered across the shock wave. Besides, the absolute and relative deviation degrees are defined in order to describe the departure of the fluid system from the equilibrium state. The local and global nonequilibrium effects, nonorganized energy, and nonorganized energy flux are also investigated. Moreover, the impacts of the relaxation frequency, Mach number, thermal conductivity, viscosity, and the specific heat ratio on the nonequilibrium behaviours around shock waves are studied. This work is helpful for a deeper understanding of the fine structures of shock wave and nonequilibrium statistical mechanics. MDPI 2020-12-10 /pmc/articles/PMC7763068/ /pubmed/33321966 http://dx.doi.org/10.3390/e22121397 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lin, Chuandong Su, Xianli Zhang, Yudong Hydrodynamic and Thermodynamic Nonequilibrium Effects around Shock Waves: Based on a Discrete Boltzmann Method |
title | Hydrodynamic and Thermodynamic Nonequilibrium Effects around Shock Waves: Based on a Discrete Boltzmann Method |
title_full | Hydrodynamic and Thermodynamic Nonequilibrium Effects around Shock Waves: Based on a Discrete Boltzmann Method |
title_fullStr | Hydrodynamic and Thermodynamic Nonequilibrium Effects around Shock Waves: Based on a Discrete Boltzmann Method |
title_full_unstemmed | Hydrodynamic and Thermodynamic Nonequilibrium Effects around Shock Waves: Based on a Discrete Boltzmann Method |
title_short | Hydrodynamic and Thermodynamic Nonequilibrium Effects around Shock Waves: Based on a Discrete Boltzmann Method |
title_sort | hydrodynamic and thermodynamic nonequilibrium effects around shock waves: based on a discrete boltzmann method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763068/ https://www.ncbi.nlm.nih.gov/pubmed/33321966 http://dx.doi.org/10.3390/e22121397 |
work_keys_str_mv | AT linchuandong hydrodynamicandthermodynamicnonequilibriumeffectsaroundshockwavesbasedonadiscreteboltzmannmethod AT suxianli hydrodynamicandthermodynamicnonequilibriumeffectsaroundshockwavesbasedonadiscreteboltzmannmethod AT zhangyudong hydrodynamicandthermodynamicnonequilibriumeffectsaroundshockwavesbasedonadiscreteboltzmannmethod |