Cargando…
Crack Detection during Laser Metal Deposition by Infrared Monochrome Pyrometer
Laser metal deposition (LMD) is an advanced technology of additive manufacturing which involves sophisticated processes. However, it is associated with high risks of failure due to the possible generation of cracks and bubbles. If not identified in time, such defects can cause substantial losses. In...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763096/ https://www.ncbi.nlm.nih.gov/pubmed/33321942 http://dx.doi.org/10.3390/ma13245643 |
_version_ | 1783627936280084480 |
---|---|
author | Wu, Yin Cui, Bin Xiao, Yao |
author_facet | Wu, Yin Cui, Bin Xiao, Yao |
author_sort | Wu, Yin |
collection | PubMed |
description | Laser metal deposition (LMD) is an advanced technology of additive manufacturing which involves sophisticated processes. However, it is associated with high risks of failure due to the possible generation of cracks and bubbles. If not identified in time, such defects can cause substantial losses. In this paper, real-time monitoring of LMD samples and online detection of cracks by an infrared monochrome pyrometer (IMP) could mitigate this risk. An experimental platform for crack detection in LMD samples was developed, and the identification of four simulated cracks in a 316L austenitic stainless-steel LMD sample was conducted. Data at temperatures higher than 150 °C were collected by an IMP, and the results indicated that crack depth is an important factor affecting the peak temperature. Based on this factor, the locations of cracks in LMD-316L austenitic stainless-steel samples can be determined. The proposed technique can provide real-time detection of cracks through layers of cladding during large-scale manufacturing, which suggests its relevance for optimizing the technological process and parameters, as well as reducing the possibility of cracks in the LMD process. |
format | Online Article Text |
id | pubmed-7763096 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77630962020-12-27 Crack Detection during Laser Metal Deposition by Infrared Monochrome Pyrometer Wu, Yin Cui, Bin Xiao, Yao Materials (Basel) Article Laser metal deposition (LMD) is an advanced technology of additive manufacturing which involves sophisticated processes. However, it is associated with high risks of failure due to the possible generation of cracks and bubbles. If not identified in time, such defects can cause substantial losses. In this paper, real-time monitoring of LMD samples and online detection of cracks by an infrared monochrome pyrometer (IMP) could mitigate this risk. An experimental platform for crack detection in LMD samples was developed, and the identification of four simulated cracks in a 316L austenitic stainless-steel LMD sample was conducted. Data at temperatures higher than 150 °C were collected by an IMP, and the results indicated that crack depth is an important factor affecting the peak temperature. Based on this factor, the locations of cracks in LMD-316L austenitic stainless-steel samples can be determined. The proposed technique can provide real-time detection of cracks through layers of cladding during large-scale manufacturing, which suggests its relevance for optimizing the technological process and parameters, as well as reducing the possibility of cracks in the LMD process. MDPI 2020-12-10 /pmc/articles/PMC7763096/ /pubmed/33321942 http://dx.doi.org/10.3390/ma13245643 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wu, Yin Cui, Bin Xiao, Yao Crack Detection during Laser Metal Deposition by Infrared Monochrome Pyrometer |
title | Crack Detection during Laser Metal Deposition by Infrared Monochrome Pyrometer |
title_full | Crack Detection during Laser Metal Deposition by Infrared Monochrome Pyrometer |
title_fullStr | Crack Detection during Laser Metal Deposition by Infrared Monochrome Pyrometer |
title_full_unstemmed | Crack Detection during Laser Metal Deposition by Infrared Monochrome Pyrometer |
title_short | Crack Detection during Laser Metal Deposition by Infrared Monochrome Pyrometer |
title_sort | crack detection during laser metal deposition by infrared monochrome pyrometer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763096/ https://www.ncbi.nlm.nih.gov/pubmed/33321942 http://dx.doi.org/10.3390/ma13245643 |
work_keys_str_mv | AT wuyin crackdetectionduringlasermetaldepositionbyinfraredmonochromepyrometer AT cuibin crackdetectionduringlasermetaldepositionbyinfraredmonochromepyrometer AT xiaoyao crackdetectionduringlasermetaldepositionbyinfraredmonochromepyrometer |