Cargando…
Assessment of Machine Learning Models to Identify Port Jackson Shark Behaviours Using Tri-Axial Accelerometers
Movement ecology has traditionally focused on the movements of animals over large time scales, but, with advancements in sensor technology, the focus can become increasingly fine scale. Accelerometers are commonly applied to quantify animal behaviours and can elucidate fine-scale (<2 s) behaviour...
Autores principales: | Kadar, Julianna P., Ladds, Monique A., Day, Joanna, Lyall, Brianne, Brown, Culum |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763149/ https://www.ncbi.nlm.nih.gov/pubmed/33322308 http://dx.doi.org/10.3390/s20247096 |
Ejemplares similares
-
Acoustic accelerometry reveals diel activity patterns in premigratory Port Jackson sharks
por: Kadar, Julianna, et al.
Publicado: (2019) -
Using tri-axial accelerometer loggers to identify spawning behaviours of large pelagic fish
por: Clarke, Thomas M., et al.
Publicado: (2021) -
Identification of reindeer fine-scale foraging behaviour using tri-axial accelerometer data
por: Rautiainen, Heidi, et al.
Publicado: (2022) -
Use of a Tri-Axial Accelerometer Can Reliably Detect Play Behaviour in Newborn Calves
por: Gladden, Nicola, et al.
Publicado: (2020) -
Uncovering Patterns in Dairy Cow Behaviour: A Deep Learning Approach with Tri-Axial Accelerometer Data
por: Balasso, Paolo, et al.
Publicado: (2023)