Cargando…
Heterogeneous Graphical Granger Causality by Minimum Message Length
The heterogeneous graphical Granger model (HGGM) for causal inference among processes with distributions from an exponential family is efficient in scenarios when the number of time observations is much greater than the number of time series, normally by several orders of magnitude. However, in the...
Autores principales: | Hlaváčková-Schindler, Kateřina, Plant, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763266/ https://www.ncbi.nlm.nih.gov/pubmed/33322439 http://dx.doi.org/10.3390/e22121400 |
Ejemplares similares
-
ITGH: Information-Theoretic Granger Causal Inference on Heterogeneous Data
por: Behzadi, Sahar, et al.
Publicado: (2020) -
Causal Inference for Heterogeneous Data and Information Theory
por: Hlaváčková-Schindler, Kateřina
Publicado: (2023) -
Discovering graphical Granger causality using the truncating lasso penalty
por: Shojaie, Ali, et al.
Publicado: (2010) -
Description length guided nonlinear unified Granger causality analysis
por: Li, Fei, et al.
Publicado: (2023) -
Granger causality revisited
por: Friston, Karl J., et al.
Publicado: (2014)