Cargando…
Tensor-Decomposition-Based Unsupervised Feature Extraction Applied to Prostate Cancer Multiomics Data
The large p small n problem is a challenge without a de facto standard method available to it. In this study, we propose a tensor-decomposition (TD)-based unsupervised feature extraction (FE) formalism applied to multiomics datasets, in which the number of features is more than 100,000 whereas the n...
Autores principales: | Taguchi, Y-h., Turki, Turki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763286/ https://www.ncbi.nlm.nih.gov/pubmed/33322492 http://dx.doi.org/10.3390/genes11121493 |
Ejemplares similares
-
Tensor-Decomposition-Based Unsupervised Feature Extraction in Single-Cell Multiomics Data Analysis
por: Taguchi, Y-h., et al.
Publicado: (2021) -
Tensor Decomposition-Based Unsupervised Feature Extraction Applied to Single-Cell Gene Expression Analysis
por: Taguchi, Y-h., et al.
Publicado: (2019) -
Application note: TDbasedUFE and TDbasedUFEadv: bioconductor packages to perform tensor decomposition based unsupervised feature extraction
por: Taguchi, Y-h., et al.
Publicado: (2023) -
Adapted tensor decomposition and PCA based unsupervised feature extraction select more biologically reasonable differentially expressed genes than conventional methods
por: Taguchi, Y-h., et al.
Publicado: (2022) -
A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction
por: Taguchi, Y-h., et al.
Publicado: (2020)