Cargando…

Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production

Sufficient supply of oxygen is a major bottleneck in industrial biotechnological synthesis. One example is the heterologous production of rhamnolipids using Pseudomonas putida KT2440. Typically, the synthesis is accompanied by strong foam formation in the reactor vessel hampering the process. It is...

Descripción completa

Detalles Bibliográficos
Autores principales: Askitosari, Theresia D., Berger, Carola, Tiso, Till, Harnisch, Falk, Blank, Lars M., Rosenbaum, Miriam A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763313/
https://www.ncbi.nlm.nih.gov/pubmed/33322018
http://dx.doi.org/10.3390/microorganisms8121959
_version_ 1783627988909162496
author Askitosari, Theresia D.
Berger, Carola
Tiso, Till
Harnisch, Falk
Blank, Lars M.
Rosenbaum, Miriam A.
author_facet Askitosari, Theresia D.
Berger, Carola
Tiso, Till
Harnisch, Falk
Blank, Lars M.
Rosenbaum, Miriam A.
author_sort Askitosari, Theresia D.
collection PubMed
description Sufficient supply of oxygen is a major bottleneck in industrial biotechnological synthesis. One example is the heterologous production of rhamnolipids using Pseudomonas putida KT2440. Typically, the synthesis is accompanied by strong foam formation in the reactor vessel hampering the process. It is caused by the extensive bubbling needed to sustain the high respirative oxygen demand in the presence of the produced surfactants. One way to reduce the oxygen requirement is to enable the cells to use the anode of a bioelectrochemical system (BES) as an alternative sink for their metabolically derived electrons. We here used a P. putida KT2440 strain that interacts with the anode using mediated extracellular electron transfer via intrinsically produced phenazines, to perform heterologous rhamnolipid production under oxygen limitation. The strain P. putida RL-PCA successfully produced 30.4 ± 4.7 mg/L mono-rhamnolipids together with 11.2 ± 0.8 mg/L of phenazine-1-carboxylic acid (PCA) in 500-mL benchtop BES reactors and 30.5 ± 0.5 mg/L rhamnolipids accompanied by 25.7 ± 8.0 mg/L PCA in electrode containing standard 1-L bioreactors. Hence, this study marks a first proof of concept to produce glycolipid surfactants in oxygen-limited BES with an industrially relevant strain.
format Online
Article
Text
id pubmed-7763313
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77633132020-12-27 Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production Askitosari, Theresia D. Berger, Carola Tiso, Till Harnisch, Falk Blank, Lars M. Rosenbaum, Miriam A. Microorganisms Article Sufficient supply of oxygen is a major bottleneck in industrial biotechnological synthesis. One example is the heterologous production of rhamnolipids using Pseudomonas putida KT2440. Typically, the synthesis is accompanied by strong foam formation in the reactor vessel hampering the process. It is caused by the extensive bubbling needed to sustain the high respirative oxygen demand in the presence of the produced surfactants. One way to reduce the oxygen requirement is to enable the cells to use the anode of a bioelectrochemical system (BES) as an alternative sink for their metabolically derived electrons. We here used a P. putida KT2440 strain that interacts with the anode using mediated extracellular electron transfer via intrinsically produced phenazines, to perform heterologous rhamnolipid production under oxygen limitation. The strain P. putida RL-PCA successfully produced 30.4 ± 4.7 mg/L mono-rhamnolipids together with 11.2 ± 0.8 mg/L of phenazine-1-carboxylic acid (PCA) in 500-mL benchtop BES reactors and 30.5 ± 0.5 mg/L rhamnolipids accompanied by 25.7 ± 8.0 mg/L PCA in electrode containing standard 1-L bioreactors. Hence, this study marks a first proof of concept to produce glycolipid surfactants in oxygen-limited BES with an industrially relevant strain. MDPI 2020-12-10 /pmc/articles/PMC7763313/ /pubmed/33322018 http://dx.doi.org/10.3390/microorganisms8121959 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Askitosari, Theresia D.
Berger, Carola
Tiso, Till
Harnisch, Falk
Blank, Lars M.
Rosenbaum, Miriam A.
Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production
title Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production
title_full Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production
title_fullStr Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production
title_full_unstemmed Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production
title_short Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production
title_sort coupling an electroactive pseudomonas putida kt2440 with bioelectrochemical rhamnolipid production
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763313/
https://www.ncbi.nlm.nih.gov/pubmed/33322018
http://dx.doi.org/10.3390/microorganisms8121959
work_keys_str_mv AT askitosaritheresiad couplinganelectroactivepseudomonasputidakt2440withbioelectrochemicalrhamnolipidproduction
AT bergercarola couplinganelectroactivepseudomonasputidakt2440withbioelectrochemicalrhamnolipidproduction
AT tisotill couplinganelectroactivepseudomonasputidakt2440withbioelectrochemicalrhamnolipidproduction
AT harnischfalk couplinganelectroactivepseudomonasputidakt2440withbioelectrochemicalrhamnolipidproduction
AT blanklarsm couplinganelectroactivepseudomonasputidakt2440withbioelectrochemicalrhamnolipidproduction
AT rosenbaummiriama couplinganelectroactivepseudomonasputidakt2440withbioelectrochemicalrhamnolipidproduction