Cargando…
Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy
BACKGROUND: Current approaches fail to separate patients at high versus low risk for ventricular arrhythmias owing to overreliance on a snapshot left ventricular ejection fraction measure. We used statistical machine learning to identify important cardiac imaging and time‐varying risk predictors. ME...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763383/ https://www.ncbi.nlm.nih.gov/pubmed/33023350 http://dx.doi.org/10.1161/JAHA.120.017002 |
_version_ | 1783628005415845888 |
---|---|
author | Wu, Katherine C. Wongvibulsin, Shannon Tao, Susumu Ashikaga, Hiroshi Stillabower, Michael Dickfeld, Timm M. Marine, Joseph E. Weiss, Robert G. Tomaselli, Gordon F. Zeger, Scott L. |
author_facet | Wu, Katherine C. Wongvibulsin, Shannon Tao, Susumu Ashikaga, Hiroshi Stillabower, Michael Dickfeld, Timm M. Marine, Joseph E. Weiss, Robert G. Tomaselli, Gordon F. Zeger, Scott L. |
author_sort | Wu, Katherine C. |
collection | PubMed |
description | BACKGROUND: Current approaches fail to separate patients at high versus low risk for ventricular arrhythmias owing to overreliance on a snapshot left ventricular ejection fraction measure. We used statistical machine learning to identify important cardiac imaging and time‐varying risk predictors. METHODS AND RESULTS: Three hundred eighty‐two cardiomyopathy patients (left ventricular ejection fraction ≤35%) underwent cardiac magnetic resonance before primary prevention implantable cardioverter defibrillator insertion. The primary end point was appropriate implantable cardioverter defibrillator discharge or sudden death. Patient characteristics; serum biomarkers of inflammation, neurohormonal status, and injury; and cardiac magnetic resonance‐measured left ventricle and left atrial indices and myocardial scar burden were assessed at baseline. Time‐varying covariates comprised interval heart failure hospitalizations and left ventricular ejection fractions. A random forest statistical method for survival, longitudinal, and multivariable outcomes incorporating baseline and time‐varying variables was compared with (1) Seattle Heart Failure model scores and (2) random forest survival and Cox regression models incorporating baseline characteristics with and without imaging variables. Age averaged 57±13 years with 28% women, 66% white, 51% ischemic, and follow‐up time of 5.9±2.3 years. The primary end point (n=75) occurred at 3.3±2.4 years. Random forest statistical method for survival, longitudinal, and multivariable outcomes with baseline and time‐varying predictors had the highest area under the receiver operating curve, median 0.88 (95% CI, 0.75‐0.96). Top predictors comprised heart failure hospitalization, left ventricle scar, left ventricle and left atrial volumes, left atrial function, and interleukin‐6 level; heart failure accounted for 67% of the variation explained by the prediction, imaging 27%, and interleukin‐6 2%. Serial left ventricular ejection fraction was not a significant predictor. CONCLUSIONS: Hospitalization for heart failure and baseline cardiac metrics substantially improve ventricular arrhythmic risk prediction. |
format | Online Article Text |
id | pubmed-7763383 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77633832020-12-28 Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy Wu, Katherine C. Wongvibulsin, Shannon Tao, Susumu Ashikaga, Hiroshi Stillabower, Michael Dickfeld, Timm M. Marine, Joseph E. Weiss, Robert G. Tomaselli, Gordon F. Zeger, Scott L. J Am Heart Assoc Original Research BACKGROUND: Current approaches fail to separate patients at high versus low risk for ventricular arrhythmias owing to overreliance on a snapshot left ventricular ejection fraction measure. We used statistical machine learning to identify important cardiac imaging and time‐varying risk predictors. METHODS AND RESULTS: Three hundred eighty‐two cardiomyopathy patients (left ventricular ejection fraction ≤35%) underwent cardiac magnetic resonance before primary prevention implantable cardioverter defibrillator insertion. The primary end point was appropriate implantable cardioverter defibrillator discharge or sudden death. Patient characteristics; serum biomarkers of inflammation, neurohormonal status, and injury; and cardiac magnetic resonance‐measured left ventricle and left atrial indices and myocardial scar burden were assessed at baseline. Time‐varying covariates comprised interval heart failure hospitalizations and left ventricular ejection fractions. A random forest statistical method for survival, longitudinal, and multivariable outcomes incorporating baseline and time‐varying variables was compared with (1) Seattle Heart Failure model scores and (2) random forest survival and Cox regression models incorporating baseline characteristics with and without imaging variables. Age averaged 57±13 years with 28% women, 66% white, 51% ischemic, and follow‐up time of 5.9±2.3 years. The primary end point (n=75) occurred at 3.3±2.4 years. Random forest statistical method for survival, longitudinal, and multivariable outcomes with baseline and time‐varying predictors had the highest area under the receiver operating curve, median 0.88 (95% CI, 0.75‐0.96). Top predictors comprised heart failure hospitalization, left ventricle scar, left ventricle and left atrial volumes, left atrial function, and interleukin‐6 level; heart failure accounted for 67% of the variation explained by the prediction, imaging 27%, and interleukin‐6 2%. Serial left ventricular ejection fraction was not a significant predictor. CONCLUSIONS: Hospitalization for heart failure and baseline cardiac metrics substantially improve ventricular arrhythmic risk prediction. John Wiley and Sons Inc. 2020-10-07 /pmc/articles/PMC7763383/ /pubmed/33023350 http://dx.doi.org/10.1161/JAHA.120.017002 Text en © 2020 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Wu, Katherine C. Wongvibulsin, Shannon Tao, Susumu Ashikaga, Hiroshi Stillabower, Michael Dickfeld, Timm M. Marine, Joseph E. Weiss, Robert G. Tomaselli, Gordon F. Zeger, Scott L. Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy |
title | Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy |
title_full | Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy |
title_fullStr | Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy |
title_full_unstemmed | Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy |
title_short | Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy |
title_sort | baseline and dynamic risk predictors of appropriate implantable cardioverter defibrillator therapy |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763383/ https://www.ncbi.nlm.nih.gov/pubmed/33023350 http://dx.doi.org/10.1161/JAHA.120.017002 |
work_keys_str_mv | AT wukatherinec baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy AT wongvibulsinshannon baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy AT taosusumu baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy AT ashikagahiroshi baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy AT stillabowermichael baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy AT dickfeldtimmm baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy AT marinejosephe baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy AT weissrobertg baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy AT tomaselligordonf baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy AT zegerscottl baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy |