Cargando…

Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy

BACKGROUND: Current approaches fail to separate patients at high versus low risk for ventricular arrhythmias owing to overreliance on a snapshot left ventricular ejection fraction measure. We used statistical machine learning to identify important cardiac imaging and time‐varying risk predictors. ME...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Katherine C., Wongvibulsin, Shannon, Tao, Susumu, Ashikaga, Hiroshi, Stillabower, Michael, Dickfeld, Timm M., Marine, Joseph E., Weiss, Robert G., Tomaselli, Gordon F., Zeger, Scott L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763383/
https://www.ncbi.nlm.nih.gov/pubmed/33023350
http://dx.doi.org/10.1161/JAHA.120.017002
_version_ 1783628005415845888
author Wu, Katherine C.
Wongvibulsin, Shannon
Tao, Susumu
Ashikaga, Hiroshi
Stillabower, Michael
Dickfeld, Timm M.
Marine, Joseph E.
Weiss, Robert G.
Tomaselli, Gordon F.
Zeger, Scott L.
author_facet Wu, Katherine C.
Wongvibulsin, Shannon
Tao, Susumu
Ashikaga, Hiroshi
Stillabower, Michael
Dickfeld, Timm M.
Marine, Joseph E.
Weiss, Robert G.
Tomaselli, Gordon F.
Zeger, Scott L.
author_sort Wu, Katherine C.
collection PubMed
description BACKGROUND: Current approaches fail to separate patients at high versus low risk for ventricular arrhythmias owing to overreliance on a snapshot left ventricular ejection fraction measure. We used statistical machine learning to identify important cardiac imaging and time‐varying risk predictors. METHODS AND RESULTS: Three hundred eighty‐two cardiomyopathy patients (left ventricular ejection fraction ≤35%) underwent cardiac magnetic resonance before primary prevention implantable cardioverter defibrillator insertion. The primary end point was appropriate implantable cardioverter defibrillator discharge or sudden death. Patient characteristics; serum biomarkers of inflammation, neurohormonal status, and injury; and cardiac magnetic resonance‐measured left ventricle and left atrial indices and myocardial scar burden were assessed at baseline. Time‐varying covariates comprised interval heart failure hospitalizations and left ventricular ejection fractions. A random forest statistical method for survival, longitudinal, and multivariable outcomes incorporating baseline and time‐varying variables was compared with (1) Seattle Heart Failure model scores and (2) random forest survival and Cox regression models incorporating baseline characteristics with and without imaging variables. Age averaged 57±13 years with 28% women, 66% white, 51% ischemic, and follow‐up time of 5.9±2.3 years. The primary end point (n=75) occurred at 3.3±2.4 years. Random forest statistical method for survival, longitudinal, and multivariable outcomes with baseline and time‐varying predictors had the highest area under the receiver operating curve, median 0.88 (95% CI, 0.75‐0.96). Top predictors comprised heart failure hospitalization, left ventricle scar, left ventricle and left atrial volumes, left atrial function, and interleukin‐6 level; heart failure accounted for 67% of the variation explained by the prediction, imaging 27%, and interleukin‐6 2%. Serial left ventricular ejection fraction was not a significant predictor. CONCLUSIONS: Hospitalization for heart failure and baseline cardiac metrics substantially improve ventricular arrhythmic risk prediction.
format Online
Article
Text
id pubmed-7763383
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-77633832020-12-28 Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy Wu, Katherine C. Wongvibulsin, Shannon Tao, Susumu Ashikaga, Hiroshi Stillabower, Michael Dickfeld, Timm M. Marine, Joseph E. Weiss, Robert G. Tomaselli, Gordon F. Zeger, Scott L. J Am Heart Assoc Original Research BACKGROUND: Current approaches fail to separate patients at high versus low risk for ventricular arrhythmias owing to overreliance on a snapshot left ventricular ejection fraction measure. We used statistical machine learning to identify important cardiac imaging and time‐varying risk predictors. METHODS AND RESULTS: Three hundred eighty‐two cardiomyopathy patients (left ventricular ejection fraction ≤35%) underwent cardiac magnetic resonance before primary prevention implantable cardioverter defibrillator insertion. The primary end point was appropriate implantable cardioverter defibrillator discharge or sudden death. Patient characteristics; serum biomarkers of inflammation, neurohormonal status, and injury; and cardiac magnetic resonance‐measured left ventricle and left atrial indices and myocardial scar burden were assessed at baseline. Time‐varying covariates comprised interval heart failure hospitalizations and left ventricular ejection fractions. A random forest statistical method for survival, longitudinal, and multivariable outcomes incorporating baseline and time‐varying variables was compared with (1) Seattle Heart Failure model scores and (2) random forest survival and Cox regression models incorporating baseline characteristics with and without imaging variables. Age averaged 57±13 years with 28% women, 66% white, 51% ischemic, and follow‐up time of 5.9±2.3 years. The primary end point (n=75) occurred at 3.3±2.4 years. Random forest statistical method for survival, longitudinal, and multivariable outcomes with baseline and time‐varying predictors had the highest area under the receiver operating curve, median 0.88 (95% CI, 0.75‐0.96). Top predictors comprised heart failure hospitalization, left ventricle scar, left ventricle and left atrial volumes, left atrial function, and interleukin‐6 level; heart failure accounted for 67% of the variation explained by the prediction, imaging 27%, and interleukin‐6 2%. Serial left ventricular ejection fraction was not a significant predictor. CONCLUSIONS: Hospitalization for heart failure and baseline cardiac metrics substantially improve ventricular arrhythmic risk prediction. John Wiley and Sons Inc. 2020-10-07 /pmc/articles/PMC7763383/ /pubmed/33023350 http://dx.doi.org/10.1161/JAHA.120.017002 Text en © 2020 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Research
Wu, Katherine C.
Wongvibulsin, Shannon
Tao, Susumu
Ashikaga, Hiroshi
Stillabower, Michael
Dickfeld, Timm M.
Marine, Joseph E.
Weiss, Robert G.
Tomaselli, Gordon F.
Zeger, Scott L.
Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy
title Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy
title_full Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy
title_fullStr Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy
title_full_unstemmed Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy
title_short Baseline and Dynamic Risk Predictors of Appropriate Implantable Cardioverter Defibrillator Therapy
title_sort baseline and dynamic risk predictors of appropriate implantable cardioverter defibrillator therapy
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763383/
https://www.ncbi.nlm.nih.gov/pubmed/33023350
http://dx.doi.org/10.1161/JAHA.120.017002
work_keys_str_mv AT wukatherinec baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy
AT wongvibulsinshannon baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy
AT taosusumu baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy
AT ashikagahiroshi baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy
AT stillabowermichael baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy
AT dickfeldtimmm baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy
AT marinejosephe baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy
AT weissrobertg baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy
AT tomaselligordonf baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy
AT zegerscottl baselineanddynamicriskpredictorsofappropriateimplantablecardioverterdefibrillatortherapy