Cargando…

Thermoresponsive Polypeptoids

Stimuli-responsive polymers have been widely studied in many applications such as biomedicine, nanotechnology, and catalysis. Temperature is one of the most commonly used external triggers, which can be highly controlled with excellent reversibility. Thermoresponsive polymers exhibiting a reversible...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Dandan, Sun, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763442/
https://www.ncbi.nlm.nih.gov/pubmed/33322804
http://dx.doi.org/10.3390/polym12122973
Descripción
Sumario:Stimuli-responsive polymers have been widely studied in many applications such as biomedicine, nanotechnology, and catalysis. Temperature is one of the most commonly used external triggers, which can be highly controlled with excellent reversibility. Thermoresponsive polymers exhibiting a reversible phase transition in a controlled manner to temperature are a promising class of smart polymers that have been widely studied. The phase transition behavior can be tuned by polymer architectures, chain-end, and various functional groups. Particularly, thermoresponsive polypeptoid is a type of promising material that has drawn growing interest because of its excellent biocompatibility, biodegradability, and bioactivity. This paper summarizes the recent advances of thermoresponsive polypeptoids, including the synthetic methods and functional groups as well as their applications.