Cargando…
Implementation of a Lightweight Semantic Segmentation Algorithm in Road Obstacle Detection
Due to deep learning’s accurate cognition of the street environment, the convolutional neural network has achieved dramatic development in the application of street scenes. Considering the needs of autonomous driving and assisted driving, in a general way, computer vision technology is used to find...
Autores principales: | Liu, Bushi, Lv, Yongbo, Gu, Yang, Lv, Wanjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763539/ https://www.ncbi.nlm.nih.gov/pubmed/33322029 http://dx.doi.org/10.3390/s20247089 |
Ejemplares similares
-
A Lightweight Semantic Segmentation Algorithm Based on Deep Convolutional Neural Networks
por: Yang, Chengzhi, et al.
Publicado: (2022) -
Retracted: A Lightweight Semantic Segmentation Algorithm Based on Deep Convolutional Neural Networks
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Occlusion-Free Road Segmentation Leveraging Semantics for Autonomous Vehicles
por: Wang, Kewei, et al.
Publicado: (2019) -
Rethinking 1D convolution for lightweight semantic segmentation
por: Zhang, Chunyu, et al.
Publicado: (2023) -
Efficient Object Detection Based on Masking Semantic Segmentation Region for Lightweight Embedded Processors
por: Yun, Heuijee, et al.
Publicado: (2022)