Cargando…
Crucial Role of ppGpp in the Resilience of Escherichia coli to Growth Disruption
Bacteria grow in constantly changing environments that can suddenly become completely depleted of essential nutrients. The stringent response, a rewiring of the cellular metabolism mediated by the alarmone (p)ppGpp, plays a crucial role in adjusting bacterial growth to the severity of the nutritiona...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763551/ https://www.ncbi.nlm.nih.gov/pubmed/33361126 http://dx.doi.org/10.1128/mSphere.01132-20 |
_version_ | 1783628045099204608 |
---|---|
author | Patacq, Clément Chaudet, Nicolas Létisse, Fabien |
author_facet | Patacq, Clément Chaudet, Nicolas Létisse, Fabien |
author_sort | Patacq, Clément |
collection | PubMed |
description | Bacteria grow in constantly changing environments that can suddenly become completely depleted of essential nutrients. The stringent response, a rewiring of the cellular metabolism mediated by the alarmone (p)ppGpp, plays a crucial role in adjusting bacterial growth to the severity of the nutritional stress. The ability of (p)ppGpp to trigger a slowdown of cell growth or induce bacterial dormancy has been widely investigated. However, little is known about the role of (p)ppGpp in promoting growth recovery after severe growth inhibition. In this study, we performed a time-resolved analysis of (p)ppGpp metabolism in Escherichia coli as it recovered from a sudden slowdown in growth. The results show that E. coli recovers by itself from the growth disruption provoked by the addition of serine hydroxamate, the serine analogue that we used to induce the stringent response. Growth inhibition was accompanied by a severe disturbance of metabolic activity and, more surprisingly, a transient overflow of valine and alanine. Our data also show that ppGpp is crucial for growth recovery since in the absence of ppGpp, E. coli’s growth recovery was slower. In contrast, an increased concentration of pppGpp was found to have no significant effect on growth recovery. Interestingly, the observed decrease in intracellular ppGpp levels in the recovery phase correlated with bacterial growth, and the main effect involved in the return to the basal level was identified by flux calculation as growth dilution. This report thus significantly expands our knowledge of (p)ppGpp metabolism in E. coli physiology. IMPORTANCE The capacity of microbes to resist and overcome environmental insults, known as resilience, allows them to survive in changing environments but also to resist antibiotic and biocide treatments and immune system responses. Although the role of the stringent response in bacterial resilience to nutritional stresses has been well studied, little is known about its importance in the ability of the bacteria to not just resist but also recover from these disturbances. To address this important question, we investigated growth disruption resilience in the model bacterium Escherichia coli and its dependence on the stringent response alarmone (p)ppGpp by quantifying ppGpp and pppGpp levels as growth was disrupted and then recovered. Our findings may thus contribute to understanding how ppGpp improves E. coli’s resilience to nutritional stress and other environmental insults. |
format | Online Article Text |
id | pubmed-7763551 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-77635512020-12-29 Crucial Role of ppGpp in the Resilience of Escherichia coli to Growth Disruption Patacq, Clément Chaudet, Nicolas Létisse, Fabien mSphere Research Article Bacteria grow in constantly changing environments that can suddenly become completely depleted of essential nutrients. The stringent response, a rewiring of the cellular metabolism mediated by the alarmone (p)ppGpp, plays a crucial role in adjusting bacterial growth to the severity of the nutritional stress. The ability of (p)ppGpp to trigger a slowdown of cell growth or induce bacterial dormancy has been widely investigated. However, little is known about the role of (p)ppGpp in promoting growth recovery after severe growth inhibition. In this study, we performed a time-resolved analysis of (p)ppGpp metabolism in Escherichia coli as it recovered from a sudden slowdown in growth. The results show that E. coli recovers by itself from the growth disruption provoked by the addition of serine hydroxamate, the serine analogue that we used to induce the stringent response. Growth inhibition was accompanied by a severe disturbance of metabolic activity and, more surprisingly, a transient overflow of valine and alanine. Our data also show that ppGpp is crucial for growth recovery since in the absence of ppGpp, E. coli’s growth recovery was slower. In contrast, an increased concentration of pppGpp was found to have no significant effect on growth recovery. Interestingly, the observed decrease in intracellular ppGpp levels in the recovery phase correlated with bacterial growth, and the main effect involved in the return to the basal level was identified by flux calculation as growth dilution. This report thus significantly expands our knowledge of (p)ppGpp metabolism in E. coli physiology. IMPORTANCE The capacity of microbes to resist and overcome environmental insults, known as resilience, allows them to survive in changing environments but also to resist antibiotic and biocide treatments and immune system responses. Although the role of the stringent response in bacterial resilience to nutritional stresses has been well studied, little is known about its importance in the ability of the bacteria to not just resist but also recover from these disturbances. To address this important question, we investigated growth disruption resilience in the model bacterium Escherichia coli and its dependence on the stringent response alarmone (p)ppGpp by quantifying ppGpp and pppGpp levels as growth was disrupted and then recovered. Our findings may thus contribute to understanding how ppGpp improves E. coli’s resilience to nutritional stress and other environmental insults. American Society for Microbiology 2020-12-23 /pmc/articles/PMC7763551/ /pubmed/33361126 http://dx.doi.org/10.1128/mSphere.01132-20 Text en Copyright © 2020 Patacq et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Patacq, Clément Chaudet, Nicolas Létisse, Fabien Crucial Role of ppGpp in the Resilience of Escherichia coli to Growth Disruption |
title | Crucial Role of ppGpp in the Resilience of Escherichia coli to Growth Disruption |
title_full | Crucial Role of ppGpp in the Resilience of Escherichia coli to Growth Disruption |
title_fullStr | Crucial Role of ppGpp in the Resilience of Escherichia coli to Growth Disruption |
title_full_unstemmed | Crucial Role of ppGpp in the Resilience of Escherichia coli to Growth Disruption |
title_short | Crucial Role of ppGpp in the Resilience of Escherichia coli to Growth Disruption |
title_sort | crucial role of ppgpp in the resilience of escherichia coli to growth disruption |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763551/ https://www.ncbi.nlm.nih.gov/pubmed/33361126 http://dx.doi.org/10.1128/mSphere.01132-20 |
work_keys_str_mv | AT patacqclement crucialroleofppgppintheresilienceofescherichiacolitogrowthdisruption AT chaudetnicolas crucialroleofppgppintheresilienceofescherichiacolitogrowthdisruption AT letissefabien crucialroleofppgppintheresilienceofescherichiacolitogrowthdisruption |